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Abstract

Under standard assumptions the reduced-form credit risk model is not capable of ac-
curately pricing the two fundamental credit risk instruments – bonds and credit default
swaps (CDS) – simultaneously. Using a data set of euro-denominated corporate bonds and
CDS our paper quantifies this mispricing by calibrating such a model to the bond data and
subsequently using it to price CDS, resulting in model CDS spreads up to 50% lower on
average than observed in the market. An extended model is presented which includes the
delivery option implicit in CDS contracts emerging since a basket of bonds is deliverable in
default. By using a constant recovery rate standard models assume equal recoveries for all
bonds and hence zero value for the delivery option. Contradicting this common assumption,
case studies of Chapter 11 filings presented in the paper show that corporate bonds do not

trade at equal levels following default. Our extension models the implied expected recov-
ery rate of the cheapest-to-deliver bond and, applied to the data, it largely eliminates the
mispricing. The calibrated recovery values lie between 8% and 47% for different obligors,
exhibiting strong variation among rating classes and industries. A cross-sectional analysis
reveals that the implied recovery parameter depends on proxies for the delivery option,
primarily the number of available bonds and the bond pricing errors. No evidence is found
for the influence of liquidity proxies.
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1 Introduction

The pace at which the credit derivatives market has been growing since its inception
about ten years ago topped all projections1, increasingly calling for the development of
more and more accurate pricing tools for these products since market reality often reveals
that the assumptions underlying the prevalent models are inadequate and misleading.

The instrument this paper focuses on is a credit default swap (CDS). This is a bilateral
contract aimed at transferring the credit risk of a (corporate or sovereign) borrower from
one market participant (the protection buyer) to another (the protection seller). The CDS
buyer pays a periodical premium for the assurance that the CDS seller will compensate
him for the loss in case the borrower defaults during the term of the contract. If so,
the protection seller pays the notional amount of the contract to the protection buyer as
compensation for the loss incurred. The latter, in turn, must deliver obligations (usually
bonds) of the defaulted borrower with total principal equal to the notional amount of the
CDS contract.

Since the CDS is a derivative instrument based on defaultable debt as the underlying
asset, it is natural to enquire about the relation between the prices of credit risk in the
bond and derivatives markets charged for resp. to a particular borrower. Such a relation
is of crucial importance for pricing and hedging credit exposures. Duffie [8] shows
that it is only under highly restrictive and simplifying assumptions that the intuitive
equality between the premium on a CDS and the yield spread of a bond over its risk-free
counterpart (written on resp. issued by the same corporate borrower) holds. In a static
setting, taking merely no-arbitrage arguments into account, the equivalence is valid for
par floating-rate notes rather than for par fixed-rate notes. As expected, applying this
argument to observable CDS and bond yield spreads, pricing discrepancies are uncovered.
The differences do not vanish even if one actually models the credit risk by employing
standard pricing models (cf. e.g. Schönbucher [24]) instead of simply replicating cash
flows. Not even complex credit risk models are presently able to price in the observed
differences. In the market this differential between CDS and bond spreads (of equal
maturities, usually 5 years) has become known as the CDS basis. Precisely this divergence
in the pricing of instruments in the bond and derivatives markets for corporate debt is
the topic of our research.

This paper explores the relation between the prices in the bond and derivatives mar-
kets on a representative and diverse cross-section of euro-denominated corporate bonds
and CDS. Using standard assumptions we quantify the above mentioned mispricing when
employing a deterministic reduced-form framework. In an extensive comparison of the
pricing properties in the bond market for several parameterizations of the default in-
tensity the Nelson-Siegel specification turns out to be optimal. This parametrization is
subsequently used to price CDS, resulting in model CDS spreads up to 50% lower on

1The statement is based on a comparison of the figures projected in the BBA Credit Derivatives Survey
2001/2002 and the latest market statistics provided e.g. by ISDA Market Surveys for the global market
at www.isda.org or by the OCC Bank Derivatives Reports for the US market at www.occ.treas.gov.
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average than observed in the market. A model extension is therefore proposed which
explicitly incorporates the delivery option implicit in CDS contracts: Since in settlement
the protection buyer is entitled to choose from a basket of pari passu deliverable obliga-
tions (bonds), she will prefer to deliver the cheapest bond in the market at default. Our
extension thus models the implied recovery value of the cheapest-to-deliver bond. Ap-
plying the extension to the data, the new recovery parameter considerably improves the
pricing properties in the CDS market, as expected. The average implied recovery rates
range from 8% to 47% and strongly vary across obligors and within individual ratings
and industries. Analyzing the implied recovery rates a cross-sectional regression reveals
a statistically and economically significant dependence on delivery option proxies. Our
paper thus points out the necessity for incorporating the random structure of recovery
rates into credit risk models in order to accurately price credit-risky instruments.

Considering the academic literature, there are several papers dealing with the pricing
difference, as measured by the CDS basis, from a wholly descriptive point of view, i.e. not
attempting to model, but simply to present and discuss possible explanatory approaches.
Hjort et al. [15] and O’Kane and McAdie [23] distinguish between fundamental
and technical (market) factors, describing their likely effects on the relative valuation
in the two markets. According to their reasoning, factors such as legal and regulatory
risk, new bond issuance, difficulties in shorting corporate bonds, the embedded delivery
option for the CDS buyer, the positivity of CDS spreads, and exotic bond features (e.g.
coupon step-ups, convertibility) drive CDS spreads higher, whereas funding costs of bonds,
counterparty risk, and leveraging opportunities constitute factors reducing CDS spreads,
while liquidity is identified as having an ambiguous pricing effect. To the best of our
knowledge, due largely to their complexity there have only been very few attempts to
include some of the above stated factors in an actual valuation.

The empirical literature on this rather narrow topic is scarce because until recently
studies have usually restricted themselves to examining features of just one of the two
markets. Rather than fitting a specific credit risk model to their data, Aunon-Nerin
et al. [2] and Benkert [4] test for the influence on CDS spreads of theoretical factors
motivated by the reduced-form and structural models via linear and semi-logarithmic
regressions. In a similar manner Collin-Dufresne, Goldstein and Martin [7] in-
vestigate the determinants of corporate bond spreads. The main message of these papers
is that CDS spreads react more intensely to firm-specific variables such as (historic or im-
plied) volatility, whereas bond spreads respond more strongly to macroeconomic factors
such as interest rates.

There exist two strands of recent empirical literature dealing with the relation be-
tween the CDS and bond markets. In the work by Zhu [25] and Blanco, Brennan
and Marsh [6] vector time series analysis is applied to investigate the long-term pricing
accuracy and the short-term pricing efficiency (dynamic linkages) between the two mar-
kets, i.e. these studies test the validity of the theoretical no-arbitrage equality between
CDS and bond spreads as deduced by Duffie [8]. Both papers analyze only CDS and
bond spreads with a maturity of five years. They find that although credit risk is priced

2



equally in both markets in the long run, there exist substantial mean-reverting discrep-
ancies in the short run. Furthermore, they report that the European and Asian bond
markets incorporate new information more quickly than the local CDS markets, contrary
to the situation in the US. The reasons they suspect to lie at the heart of these phenomena
correspond to the factors specified in the above mentioned heuristic surveys: the cost-
liness of shorting corporate bonds, the delivery option, and liquidity. In addition, they
analyze the determinants of the spread differentials, essentially confirming the findings of
the separate studies referred to above.

The line of research our work is embedded in are studies relying on the reduced-form
model and its extensions. In a work by Houweling and Vorst [16], a reduced-form
model with a polynomial intensity function and a fixed recovery rate is fitted to bond
data and subsequently used to calculate model CDS spreads. The paper points out the
differential pricing in the bond and derivatives markets by first directly comparing quoted
CDS spreads to bond yield spreads and then to model CDS spreads. Their finding central
to our paper is that bond spreads as well as model CDS spreads are lower compared to
market CDS spreads. This mispricing is especially pronounced for speculative-grade bor-
rowers, though not equally as clear-cut for investment-grade ones. In the paper the pricing
characteristics of a simple reduced-form model specification are examined, but explica-
tions for their observations and suggestions for possible model extensions are presented
only verbally.

The most popular explanation proposed in the literature for the divergence in the prices
of credit risk between the bond and derivatives markets has been liquidity, although there
is no consensus about its actual effect on the prices. In a classic paper by Jarrow [20]
liquidity risk is modelled in a reduced-form framework as a general convenience yield pro-
cess affecting corporate bond prices. A subsequent empirical paper by Janosi, Jarrow
and Yildirim [19] calibrates a concrete specification of this model to corporate bond
prices adding an affine function of market variables as the convenience yield. Their data
shows that the price fluctuations not captured by interest-rate and credit risk processes
are largely idiosyncratic, i.e. do not depend on systematic factors. More importantly, the
calibrated convenience yield process changes the sign, which casts doubt on its relation
to liquidity. Furthermore, the paper does not test this process against liquidity proxies.

Modelling in a reduced-form framework as well, Longstaff, Mithal and Neis [21]
attach a liquidity discount process to corporate cash flows, but, arguing that CDS are the
more liquid instrument, do not apply it to CDS spreads. They split the corporate bond
spread into a default and a non-default component, inferring the former from the CDS
spread. Their non-default component exhibits rapid mean reversion and dependence on
market-wide and firm-specific liquidity proxies. As in the Houweling and Vorst [16]
paper a model-independent comparison between bond and CDS spreads is performed, but
surprisingly with the opposite outcome: bond spreads are higher on average than market
CDS spreads, and this effect increases (in absolute terms) with lower rating. We suspect
that both the sign of the mispricing and the significant dependence of the non-default
component on liquidity proxies are a consequence of the specific data set used in the
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study since the offered liquidity argument would unlikely hold for the data sets analyzed
in Houweling and Vorst [16], Blanco, Brennan and Marsh [6] and Janosi,
Jarrow and Yildirim [19].

The bottom line is that literature hitherto still leaves open both the actual direction
and the determinants of the pricing differences, as well as which explanatory approach
should be taken. Applying a standard reduced-form model to our data set results in model
CDS spreads which are up to 50% lower than the observed market spreads – a finding
qualitatively in line with Houweling and Vorst [16]. Since on average we observe an
underpricing of CDS, the liquidity adjustment in Longstaff, Mithal and Neis [21]
seems not to be the appropriate choice of a model extension in our case. Therefore, in
contrast to the papers discussed above, this paper studies an alternative approach to
explaining the divergence in the pricing between the bond and derivatives market: the
existence of a delivery option for the protection buyer in a CDS contract with physical
delivery. Commonly debt of the same seniority is assumed to trade at the same level
following a default, which is reflected by the modelling assumption of identical recovery
rates for the defaulted bonds. In contrast to this simplification economically significant
price differences routinely persist, as we show in several case studies of recent Chapter
11 filings (cf. Section 3.2). The CDS spread must thus reflect the value of the delivery
option at the inception of the CDS contract additionally to capturing the default risk of
the borrower. The aim of the present paper is therefore to incorporate the delivery option
in the model specification in order to achieve superior pricing across both markets.

Bond prices at default enter the valuation of CDS through the expected recovery
rate of the cheapest-to-deliver bond. Since the delivery option essentially depends on
the minimum bond price at default, it must be related to the recovery value expected
by market participants at inception of the CDS contract. Therefore we include this
(risk-neutral) implied recovery value of the cheapest-to-deliver bond in the model and
extract it from CDS data as an indicator for the implicit value of the delivery option.
The implied recovery parameter considerably improves the pricing properties in the CDS
market and strongly vary across obligors and within individual ratings and industries.
Using regression analysis we explore the driving factors of the implied recovery rates. A
cross-sectional regression reveals a statistically and economically significant dependence
on delivery option proxies. In order to test whether liquidity possesses any explanatory
power, the implied recovery rates are regressed against liquidity proxies, but they prove to
be unambiguously insignificant. In summary, our paper provides solid evidence that the
documented differences in pricing between the bond and CDS market can be attributed
to the effect of the delivery option the CDS buyer has at the time of default.

The paper is structured as follows: Section 2 presents the standard reduced-form model
and evidences its weakness in the simultaneous pricing of bonds and CDS. In Section 3
we motivate, introduce and empirically examine an extension to the standard setup based
on the delivery option. Finally, Section 4 summarizes our findings.
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2 Credit Risk Modelling

In this section standard reduced-form credit risk models are applied to bond and CDS
data in order to analyze their performance when pricing simultaneously in these two
markets. Since the existing literature lacks a systematic comparison of available model
specifications, the pricing ability of several parameterizations is examined by calibrating
them to the bond market. Subsequently, the pricing accuracy in the CDS market is
examined for the best performing model specification. Given that previous studies report
both over- and undervaluations of CDS contracts, as outlined in Section 1, further insight
is thus provided into the direction of the mispricings. Since an accurate estimate of the
mispricing is crucial for the choice of a model extension, details of CDS contracts neglected
in other studies are precisely taken into account, especially the exact maturity and accrual
payments.

2.1 Bond Valuation

In line with standard reduced-form modelling, as e.g. presented in Schönbucher [24],
an arbitrage-free market without transaction costs is assumed, where uncertainty is mod-
elled by a filtered probability space (Ω,F , {Ft}, Q). The measure Q denotes the pricing
measure associated with the (riskless) money market account. In this market riskless
and defaultable zero-coupon bonds and defaultable coupon bonds are traded. Denote
by P (t, T ) the time-t value of a riskless zero-coupon bond with maturity T , and by τ
the random default time, implicitly independent of the riskless term structure under the
pricing measure. Let Q(t, T ) = EQ

t [1{τ>T}] be the risk-neutral survival probability over
the time period 〈t, T ].

Consider a defaultable coupon bond with outstanding coupon payments c at times
t1 < t2 < . . . < tN , maturity tN and a face value normalized to 1. Denote by δ(tn−1, tn)
the fraction of the year between the payment dates tn−1 and tn taking into account the
relevant day count convention. Under the recovery of face value assumption (cf. Section
2.3.2), i.e. a fixed fraction π of face value being paid at the default time τ , the time-t
price C(t, {tn}, c, π) of this coupon bond is obtained by applying the risk-neutral valuation
principle to the coupon, face value and recovery cash flows:

C(t, {tn}, c, π) =
N∑

n=1

c δ(tn−1, tn) P (t, tn) EQ
t

[
1{τ>tn}

]
+ P (t, tN) EQ

t

[
1{τ>tN}

]
+

+ EQ
t

[
π P (t, τ) 1{τ≤tN}

]
=

N∑
n=1

c δ(tn−1, tn) P (t, tn) Q(t, tn) + P (t, tN) Q(t, tN) +

+ π

∫ tN

t

P (t, s) fτ (t, s) ds , (1)
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where t0 = t and fτ (t, s) denotes the probability density function of the default time τ
given information at time t. The density exists if the survival probability function Q(t, T )
is differentiable from the right in T and in that case it can be expressed as:

fτ (t, s) = − ∂

∂s
Q(t, s) .

The required differentiability is ensured in all our model specifications (cf. Section 2.3.1).
The integral in Eq. (1) is therefore numerically approximated via differences over a time
grid t = s0 < s1 < . . . < sM = tN :∫ tN

t

P (t, s) fτ (t, s) ds ≈
M∑

m=1

P (t, sm)
(
Q(t, sm−1)−Q(t, sm)

)
. (2)

Effectively, the mesh of the time grid corresponds to the time step in our observa-
tions whether default has yet occurred, the underlying simplifying assumption being that
recovery is paid at the observation time immediately following default. Basically, the ac-
curacy of the discretization increases by raising the default observation frequency. In the
empirical evaluations monthly time steps are used since higher frequencies, e.g. weekly
time steps, result in practically identical prices.

2.2 CDS Valuation

There are two sides to a CDS contract: the fixed leg, comprising of the regular payments
by the protection buyer, and the default leg, containing the contingent payment by the
protection seller. The exact cash flow structure of the fixed leg in a standard ISDA
contract (cf. 2003 ISDA Credit Derivatives Definitions [18]) is specified as follows:
Premium payment dates are fixed and do not depend on the specific contract date. They
are quarterly and happen on the 20th of March, June, September and December. Thus, if
a CDS is contracted between those dates, the first period is not a full quarter and the first
premium payment is adjusted accordingly. In addition, we account for the now variable
maturity of CDS contracts: As a result of fixing the premium payment dates, the length
of the protection period varies and depends on the contract date since the quoted CDS
maturity begins on the first premium payment date. Furthermore, the accrued premium
in case of default must be taken into account. Lastly, the day count convention used in
CDS contracts is actual/360.

Consider a CDS with outstanding premium payments p at times t1 < t2 < . . . < tN ,
maturity tN and notional normalized to 1. The same recovery assumption as for corporate
bonds is employed. Denoting the time-t value of the fixed leg by V fix(t, {tn}, p) and the
time-t value of the default leg by V def(t, tN , π), then the time-t value of the CDS contract
to the buyer is V def(t, tN , π)− V fix(t, {tn}, p).

If default happens within the protection period, the protection buyer has made I(τ) =
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max{1 ≤ n ≤ N : tn ≤ τ} premium payments, the remaining ones I(τ) + 1, . . . , N being
no longer due, except for an accrual payment of p δ(tI(τ), τ) at time τ . Hence, the time-t
value of the fixed leg is given by

V fix(t, {tn}, p) =
N∑

n=1

p δ(tn−1, tn) P (t, tn) EQ
t

[
1{τ>tn}

]
+

+ EQ
t

[
p δ(tI(τ), τ) P (t, τ) 1{τ≤tN}

]
=

N∑
n=1

p δ(tn−1, tn) P (t, tn) Q(t, tn) +

+ p

∫ tN

t

δ(tI(s), s) P (t, s) fτ (t, s) ds ,

where t0 = t. On the other hand, the time-t value of the default leg is given by

V def(t, tN , π) = EQ
t

[
(1− π) P (t, τ) 1{τ≤tn}

]
= (1− π)

∫ tN

t

P (t, s) fτ (t, s) ds . (3)

In both valuation formulas the integral is approximated in the same manner as in Eq. (2).

At initiation of a CDS the premium p(t, {tn}, π) is chosen such that the contract value
to both parties is zero, and since the value of the fixed leg is homogeneous of degree 1 in
p, it follows that

p(t, {tn}, π) =
V def(t, tN , π)

V fix(t, {tn}, 1)
. (4)

2.3 Model Specification

In order to complete the valuation a precise model parametrization must be chosen for
the intensity function, the recovery rate, and the riskless interest rate to be used in the
empirical study.

2.3.1 Intensity Function

The fundamental choice when modelling the default intensity is whether it should be
stochastic or deterministic. We consider the deterministic model to be entirely adequate,
as already argued by Houweling and Vorst [16] and Malherbe [22]. A stochastic
representation may appear more realistic though, the more so as dependencies with other
risk factors (e.g. interest rate risk and recovery risk) can be implemented in this case.
Surprisingly, the theoretically additional flexibility of stochastic models with dependent
risk factors does not substantially improve the model fit (as documented e.g. in Duffie,
Pedersen and Singleton [9]), so independent risk factors are mostly assumed (as
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in all previously mentioned studies), thereby reducing the main advantage of stochastic
modelling. Moreover, the scarcity of data in the corporate bond market poses serious
restrictions on the number of model parameters to be estimated (cf. Section 2.4).

Assuming the existence of a non-negative bounded deterministic function λ(t) repre-
senting the intensity of the default time τ under the pricing measure Q, the risk-neutral
survival probability can be expressed as

Q(t, T ) = exp

{
−

T∫
t

λ(s) ds

}
.

To the best of our knowledge, the academic literature lacks a comprehensive com-
parison between the pricing abilities of the available parameterizations for the intensity
function. There exists a tradeoff when choosing a specific functional form since on the one
hand the intensity should reproduce market prices as accurately as possible, and on the
other hand it should be specified as parsimoniously as possible to cope with data restric-
tions. This study examines six functional forms commonly encountered in the literature
to find the one optimal for our corporate credit risk data. The following specifications are
employed (cf. Table 1): polynomials up to order 3 (as in Houweling and Vorst [16]),
a log-linear function, and the Nelson-Siegel and Svensson functions.

2.3.2 Recovery Rate

As stated in Sections 2.1 and 2.2 on valuation, the recovery payoff in default is expressed
in the recovery of face value (also called recovery of par) formulation, where a fraction π of
the contract’s notional amount is paid back in default. The idea underlying this recovery
formulation is a liquidation of the defaulted obligor’s assets by a bankruptcy court, in
which case all claims are only on the notional (e.g. bond coupons are disregarded) and
relative priority of claims is respected. Thus, in default the investor receives a fraction
of the face value of an asset depending on its seniority. We opted for this formulation
because it coincides with the definition of the default payment in CDS contracts, where
only the face value of debt is protected.

As common in academic literature and practical applications, the recovery parameter
π is assumed constant. In our calculations it is set equal to 40% in both markets (as
assumed e.g. by Malherbe [22] and in standard pricing tools in Bloomberg as well). In
analyses not reported here we employ recovery rates in a range between 20% and 60%,
but the effect on prices is negligible since the default intensity adjusts accordingly.

2.3.3 Riskless Rate

For the valuation of bonds and CDS one additionally needs a term structure of riskless
interest rates. Although a natural choice is offered by interest rates derived from gov-
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ernment bonds, lately it has repeatedly been evidenced that investors have shifted to use
(plain vanilla) interest rate swaps as the reference riskless curve instead of government
bonds (as reported e.g. in Houweling and Vorst [16] and Hull, Predescu and
White [17]). This shift could have originated from several factors, for instance from the
introduction of the euro, which caused the bonds of the member countries to trade at
different interest rate levels in the same currency making a definite choice impossible (cf.
Geyer, Kossmeier and Pichler [12]). A further drawback of government securities
is their illiquidity in comparison to interest rate swaps arising from the fact that in na-
ture bonds are in limited supply, whereas the notional in an interest rate swap can be
contracted almost arbitrarily large.

A disadvantage of the swap rate is that it actually entails credit risk from two sources,
namely counterparty risk and the underlying floating payments being indexed to a de-
faultable short-term interbank rate (cf. Feldhütter and Lando [11]). Nevertheless,
interest rate swaps are the most liquidly traded interest rate product and reflect the cur-
rent term structure of riskless interest rates most accurately. For this reason we employ
riskless zero-coupon term structures derived from swap rates.

2.4 Data

The data set underlying our study consists of daily price quotations for euro-denominated
bonds and CDS of a broad cross-section of corporate borrowers. The data span two
years from January 2003 to January 2005. We use senior unsecured plain vanilla coupon
bonds without any optional features and CDS on senior obligations with specified physical
delivery and the ‘modified modified restructuring’ clause, which is common in Europe.
All quotes are snapshots taken from Reuters at 15:00 GMT/BST with a time window of
plus/minus 90 minutes. The riskless term structure of interest rates is constructed from
synchronous money market and swap rates.

Since the reliability of data is a critical issue in corporate credit markets, in order
to ensure the quality of quotations, all bond quotes entering the analysis represent av-
erages over at least three quotes stemming from different contributors, with an upper
bound for the respective bid-ask spreads and for the discrepancy between the pairs of
quotes. Nevertheless, the data set contains merely quotations and not actual trade prices.
However, these quotations are used by practitioners in daily business and typically hold
for a contract size in the order of magnitude of 10 million euro, with most transactions
taking place within the quoted bid-ask spread. Similar quality checks are also applied to
the CDS quotes, which are additionally compared to actual trade data from brokers to
discard quotations potentially far from actual prices. In our analyses we use the mid of
the bid-ask quotations.

Regarding the maturity structure of the data, there exists a high concentration of CDS
quotes at the five-year maturity, which led most studies dealing with corporate credit
data to focus on this one specific maturity where data is available for a larger number of
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borrowers (as e.g. in [6], [21] and [25]). This approach has the obvious disadvantage that
credit risk effects are only observed for one single point on the term structure. In order
for our study to provide a more detailed insight, we select borrowers with enough data
to estimate a complete term structure of the default intensity on a daily basis. Though
this requirement significantly reduces the number of eligible borrowers, it provides the
opportunity to observe credit risk effects for the whole maturity spectrum.

We choose obligors for which both bond and CDS quotes are available for at least two
maturities on approximately 75% of all trading days in the two-year period, additionally
requiring that the bond and CDS maturity ranges sufficiently overlap: Bonds with matu-
rities longer than ten years are excluded since longer-dated CDS are seldom traded. On
each day, only CDS with maturities not shorter than the shortest bond maturity and not
longer than one year after the longest bond maturity are included in the analysis.

Based on these criteria twelve corporate borrowers, presented in Table 2, are singled
out. Although we only have a small sample available, it consists of high quality data
and enables us to carry out term structure estimations. The selected companies cover a
wide range of industries and rating classes therefore constituting a representative sample.
For each obligor there are on average 3.8 bonds and 3.1 CDS available for estimation
on each day. The maturity range spanned by the bonds and CDS is roughly five years,
concentrated in the maturities between three and seven years.

2.5 Methodology

Using the presented data set we analyze to which extent common deterministic reduced-
form models are able to simultaneously price bonds and CDS by first calibrating the
models to bond data and subsequently examining their pricing ability in the CDS market.

All six models are calibrated on a daily basis to the bond quotations for each of the
issuers. Denote by θ the parameter vector and by Θ the space of admissible parameters
for the respective model. Suppressing the issuer and model indices, on every day t there
are It bonds available with observable market quotes C mkt

i,t , 1 ≤ i ≤ It. The calibration is
carried out by minimizing the mean absolute bond pricing errors of the respective model:

θ∗t = arg min
θ∈Θ

It∑
i=1

|C mkt

i,t − Ci(t, {tin}, ci, π; θ)| .

The estimation is implemented via non-linear optimization.

The various parameterizations of the intensity are compared on the basis of resulting
bond pricing errors to find the optimal functional form exhibiting an acceptable mean
absolute error and a parsimonious number of free parameters. To analyze the pricing per-
formance in the CDS market, on each day model-implied CDS spreads are calculated for
maturities lying within the bond maturity range, employing the best performing intensity
function.
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2.6 Results

We identify the optimal parametrization of the intensity function for our bond data by
comparing the model and market bond prices. Table 3 displays the resulting mean abso-
lute pricing errors (MAE) for the various specifications.

Overall, the Svensson function provides the lowest MAE of 9.02 bp based on six free
parameters. Comparing the two functional forms with four parameters, the Nelson-Siegel
function exhibits a 9.62 bp MAE, which is lower than the 13.94 bp MAE for the cubic
function. Considering three-parameter families, the log-linear function (MAE 14.92 bp)
performs better than the quadratic function (MAE 25.51 bp). Finally, the linear function,
being a model with only two parameters, has the highest MAE of 41.42 bp. The pricing
performance of most models thus lies within an average bid-ask spread of roughly 30 bp
usually encountered in the corporate bond market.

Although the pricing accuracy of a model is the dominant criterion, a parsimonious
representation is almost equally important since the scarcity of data presents a consider-
able modelling constraint in corporate debt markets. Judging by the MAE, polynomial
functions as employed in Houweling and Vorst [16] seem to be an unsatisfactory
choice for the intensity because there exist alternative functional forms with an equal
number of parameters providing lower MAE, namely the Svensson and Nelson-Siegel pa-
rameterizations. A further advantage of the latter two functional forms over the log-linear
and polynomial functions is the convergence of the intensity to a long-term limiting value,
which is especially useful for extrapolations. Taking the scarcity of data into account, the
Nelson-Siegel function appears to represent an acceptable tradeoff: Its pricing accuracy is
nearly as high as for the Svensson function, but the number of parameters is considerably
lower (four vs. six). We therefore choose the Nelson-Siegel specification for all following
analyses.

Having identified the functional form for the intensity with the least feasible number
of free parameters reproducing observed bond prices sufficiently closely, we examine its
pricing performance in the CDS market by comparing the observed to the model-implied
CDS spreads. Table 4 presents the CDS pricing errors for each obligor.

On average the mean absolute pricing error (MAE) is 24.30 bp or 23.92% expressed in
relation to the spread size, which constitutes a considerable mispricing. The mean relative
absolute errors (MRAE) lie within a minimum of 10.25% and a maximum of 57.53% of
the spread. Moreover, the mean pricing errors (ME) are biased: For eight obligors the
model CDS spread is lower on average then the market CDS spread, and higher for four
obligors. The mean difference between model and market CDS spreads is thus negative
and tends to increase with lower rating grades when measured in basis points, but not
when measured as a percentage of the market spread. Figure 1 shows the time series of
CDS pricing errors for the different maturities for DaimlerChrysler as a representative
example.

The findings are qualitatively in line with Houweling and Vorst [16] and Blanco,
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Brennan and Marsh [6], but opposed to the CDS basis reported in Longstaff,
Mithal and Neis [21], where the model-independent CDS spread, proxied by the bond
spread, turns out higher than the market CDS spread, with the difference getting more
pronounced for lower rating grades. The lack of pricing accuracy in the CDS market thus
obviously necessitates an extension of the standard setup to obtain a credit risk model
able to accurately price CDS and bonds at the same time. In the next section we therefore
discuss potential extensions and motivate our decision to model the delivery option of the
CDS contract.

3 Modelling Extension

The literature proposes a multitude of potential factors for explaining the origin of the
differences in the pricing between the bond and CDS markets. As mentioned in the
introductory section, these are put forward e.g. in studies by Hjort et al. [15] and
O’Kane and McAdie [23], though in a purely descriptive manner. The explanatory
factors most often cited in the literature are liquidity and the delivery option, the rest
being even less tangible.

3.1 Liquidity vs Delivery Option

The traditionally popular explanation for real-world market imperfections – liquidity –
has hitherto already been thoroughly analyzed in the literature, yet with conflicting con-
clusions. The studies fail to unambiguously answer several crucial questions: First of all,
it is still unclear whether liquidity actually presents a valid explanation in the first place
since the arguments produced could affect spreads either way, i.e. which market should
be more liquid than the other and why. Even after accepting liquidity as the driver of the
mispricings, it remains unresolved whether the difference in liquidity is perhaps between
CDS and bonds of single maturities rather than between the markets as a whole, whether
the level of (relative) liquidity alternates with time between the two markets and/or be-
tween instruments, or whether the bond and CDS markets for similar issuers (e.g. of a
particular rating) must exhibit similar relative liquidity properties.

The paper by Janosi, Jarrow and Yildirim [19] reveals the difficulty: Their
calibrated convenience yield process exhibits a varying sign, which raises doubts on its
relation to liquidity. Longstaff, Mithal and Neis [21] indeed report a dependence on
liquidity proxies of their residual yield spread obtained by calibrating an extra discount
process to corporate bonds; since in addition they report an overestimation of CDS spreads
before adjusting for liquidity – which is in contrast to most other studies – our conjecture
is that both the observed direction of the mispricings and the liquidity dependence are in
all likelihood attributable to the specific data set used. Their argument would unlikely
hold for the data sets analyzed in Houweling and Vorst [16], Blanco, Brennan
and Marsh [6] and Janosi, Jarrow and Yildirim [19]. The data set at our disposal
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displays mispricings in line with the ones reported in Houweling and Vorst [16] and
Blanco, Brennan and Marsh [6], and furthermore it turns out that liquidity proxies
do not possess any explanatory power (cf. Section 3.4).

For the stated reasons this paper considers the delivery option as an alternative expla-
nation for the mispricing between the bond and CDS market stemming from the manner
in which a CDS is usually settled in default. Since the form of settlement prevailing in
the CDS market by far is physical delivery of defaulted assets (in contrast to cash set-
tlement), one must examine its implications for CDS pricing. Namely, a CDS contract
commonly refers not to one single deliverable obligation only, but to a basket of deliv-
erable obligations satisfying certain conditions, the crucial one being the seniority of the
debt delivered. As illustrated by event studies in Section 3.2, contrary to the common
modelling assumption of equal bond prices in default, the differences between post-default
prices of deliverable bonds cannot be ignored.

One conceivable origin of differing bond values in and after default is put forth in a
recent theoretical paper by Guo, Jarrow and Zeng [14] for instance, who develop a
reduced-form model based on the idea that a default does not need to immediately lead
to bankruptcy. According to their definition, the issuer continues to operate after default
depending on whether she is solvent or not. As a result, the issuer’s bonds continue
to exist as well, and trade at different levels depending on their characteristics (coupon
and maturity). Studies by Guha [13] or Duffie and Singleton [10] also suggest that
bond prices at default could reflect market expectations whether the obligor will continue
operating after the credit event or rather be liquidated straight away. Another possible
origin could be deduced for example from particular supply and demand considerations
in default, e.g. when one market participant is accumulating debt of a defaulted borrower
to influence the outcome of the bond settlement process. A third origin of differing bond
prices in and after default could arise from trading frictions (e.g. high transaction costs)
and market imperfections (e.g. the impossibility of shorting), which induce individual
bonds to trade away from their supposedly fair values. Bond pricing errors as calculated
in Section 2.6 are a possible indicator of such deviations.

The protection buyer thus possesses an option to deliver the cheapest bond(s) upon
default. Obviously, the spread at the inception of the CDS contract must reflect the
uncertain recovery values (i.e. bond prices) in default, additionally to capturing the default
risk of the borrower. The common modelling assumption of a recovery value which is
constant and identical across both markets has several consequences: For one, it implies
that bond prices are equal in default, making the delivery option worthless. Moreover,
such a recovery rate forces the CDS spread to be driven exclusively by the default risk
of the underlying, as can be clearly discerned from Eq. (3), potentially causing unnatural
fluctuations in the implied default intensity. Lastly, from a modelling point of view,
plugging in constant recovery rates precludes the analysis of their mutual dependence on
the default intensities.

As observed in Section 2.6, mispricing arises when equal recovery values are used in
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the bond and CDS markets. The aim of the present paper is to analyze whether the
inclusion of variable CDS recovery values representing the cheapest-to-deliver bond price
in default can bring about pricing effects and explain the emergence of the CDS basis.

3.2 Case Studies of Defaults

For the purpose of verifying the conjecture that the delivery option potentially possesses
value, we inspect the behavior of bond prices during the time period immediately before
and after default for three companies which filed for Chapter 11 bankruptcy protection
during 2005. The obligors are Delta Air Lines, Inc. and Northwest Airlines, Inc., which
filed for Chapter 11 on Wednesday, September 14th, 2005, and Delphi Corp., which filed
for Chapter 11 on Saturday, October 8th, 2005. Price quotations from Bloomberg are at
our disposal for four (senior unsecured) bonds issued by Delta and Northwest Airlines each
and for three (senior unsecured) bonds of Delphi. The price information is available for the
whole month in which the respective defaults occurred and consists of the mid-quotations
of the daily low, high and closing prices for each bond.

Figure 2 shows the daily average closing prices for each company in its month of
default. The default event had a clear impact on the bond prices of Northwest and
Delphi, whereas the default of Delta apparently happened as no surprise to the market
since it had no noticeable effect on bond prices. Comparing the average closing prices at
default, we observe that the price levels of the three obligors are quite dispersed: Delta
had the lowest price level with an average bond price of 15.92 (per 100 of face value),
followed by Northwest with 26.81 and Delphi with 57.92. These figures point at high
variations in the recovery between different corporate defaults.

Since the delivery option in a CDS is worthless in default if bond prices of the company
coincide, our main interest lies in comparing the individual bond prices of each obligor to
detect their potential discrepancies. In the ideal case one seeks to compare price informa-
tion for different bonds obtained at exactly the same points in time. Since only the daily
low, high and closing prices for each bond are at our disposal, we are merely able to infer
certain bounds on the contemporaneous maximum price differences, as described below.
Closing prices provide some indication of contemporaneous price differences, though with
two drawbacks: First, closing prices might not be contemporaneous since the end-of-day
values could stem from different points in time during the trading day, and second, intra-
day price deviations might be both lower and higher than suggested by closing prices.
Information on the intra-day price differences is therefore inferred by looking at the daily
low and high of each bond price.

Let us assume for a moment that an obligor has only two bonds outstanding on default
day, bond A and bond B. We have at our disposal the high and low for both bonds on
default day. Without loss of generality, let bond A have the smaller low price. In the
period during this trading day when bond A was at its low, bond B was by definition
trading at a price greater or equal to its own low. It follows that if the difference between
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these lows is non-zero, there must have existed a period during the day when the price
difference between these bonds was at least that much. For this reason we term this value
the lower bound of the contemporaneous (maximum) price differences. On the other hand,
bond B traded at most at its own high price on this day, and especially in the period when
bond A was at its low. The difference between these values is thus an upper bound on
the contemporaneous price differences. This is the highest possible price difference which
might have been realized on this day. The case with more than two bonds outstanding
at the time of default is analogous. In order to infer the lower bound we compare the
maximum and the minimum of the bonds’ low prices, and for the upper bound we consider
the maximum of the highs and the minimum of the lows.

Table 5 contains the bounds for the contemporaneous price difference for each obligor
on its day of default. For Delta Airlines the values are in the range between 4.42 and 8.67,
and the dispersion of closing prices amounts to 1.81. For Delphi the price differences are
of comparable magnitude with 1.50 between closing prices, a lower bound of 3.00, and an
upper bound of 8.50. For Northwest Airlines the differences are even higher with a 6.00
difference between closing prices, a 3.39 lower bound, and a 12.40 upper bound. Overall,
we find substantial contemporaneous price deviations in the range of 3 to 12, strongly
indicating that the delivery option is valuable and requires further consideration.

Since on the one hand the default event is anticipated by the market for some obligors,
e.g. Delta Airlines, and on the other hand the settlement period for CDS contracts lasts
30 days following a default, price differences before and after default are of additional
interest. Figure 3 shows the daily lower and upper bounds of the price differences in the
month of default for each company. The price differences before and after default are
quite similar for Delta Airlines and Delphi, whereas for Northwest Airlines significantly
higher differences are observed before default possibly because it happened as a surprise
to the market. After default, the lower bounds are in the range of 1 to 8 and the upper
bounds are between 3 and 14 for all companies, strengthening the argument against equal
default prices. Furthermore, bond prices vary strongly over time after the default event:
Comparing the maximum high and the minimum low of bond prices over the post-default
period (cf. Table 5) yields 9.6 vs. 22 for Delta Airlines, 19.5 vs. 32 for Northwest Airlines,
and 49.2 vs. 70.5 for Delphi.

The findings described above are in line with the ones in a more comprehensive study
of corporate defaults by Guha [13]. Upon closer inspection of Table VIII in the cited
paper, which shows the bond-price ranges of all obligors in the sample on default day, one
finds that obligors with a price range wider than one dollar are almost as numerous as the
ones with prices converging to approximately the same value (i.e. price range within one
dollar). Incomprehensibly, the author claims that “in the vast majority of cases bonds
of the same issuer and seniority are valued equally or within one dollar by the market,
irrespective of their time to maturity” [13, p. 21, emph. added]. This claim obviously
contradicts his observations, the more so as bond price differences in default are likely
to be even higher when focusing only on the subset of obligors which are actively traded
in the CDS market and taking into account not just their day of default, but the whole
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period up to the CDS settlement day.

In this case study we have uncovered substantial bond price differences both contem-
poraneously and over time, showing the complex stochastic nature of recovery rates. The
findings indicate that the delivery option is potentially valuable and thus needs to be
explicitly accounted for in credit risk models. One drawback of our case study is that the
data only include mid-prices, but the deviations of the individual bonds are nevertheless
obvious and should hold when the bid-ask spread is included.

3.3 Extended Methodology

As discussed in the preceding sections, within the reduced-form framework little has
been written on the implementation of recovery rate models although they are equally as
significant to the accuracy of a credit risk model as is the default likelihood. Hence, since
the aim of this paper is to analyze the influence of the delivery option, we are compelled
to go beyond the customary model, which implicitly ignores its existence.

The prevailing intensity-based model values bonds and CDS with the same underlying
credit risk using a constant recovery parameter equal for both markets, usually inferred
from surveys of historically realized recovery rates such as Altman, Resti and Sironi
[1]. This is exactly the setup we adopted in our basic analysis in Section 2, finding out that
it is inadequate for simultaneous pricing in both the underlying and derivatives market.

Going beyond the usual model means that we need to induce uncertainty in the recov-
ery rates of bonds at the time of default. Formally, a straightforward way of achieving this
goal within the reduced-form framework is augmenting the Poisson (one-point) process
modelling the survival and default of an obligor by a vector of random markers represent-
ing the recovery rates of bonds and drawn at the time of default. In this respect our setup
builds on Schönbucher [24]. Based on a general model exhibiting random recovery rates
as a motivation for our approach, we deduce and justify the assumptions adopted in the
subsequent empirical analysis in order to reduce the parameters to a computationally
tractable number.

Taking one step back, not only are realized recovery rates among bonds in default
different, but there is another source of randomness driving the correct recovery parameter
in the pricing of CDS – the number of deliverable bonds outstanding at the time of default.
Bühler and Düllmann [5] face a similar problem when developing a conversion factor
system for a multi-issuer bond futures contract. The paper conveniently assumes that the
clearing house pledges to substitute defaulted bonds by bonds of similar characteristics in
order to avoid dealing with a random number of deliverable bonds. Analogously, we also
make the assumption that the number of deliverable bonds, K, is constant and known at
inception of the CDS contract. It can be argued that the firms in the sample are mature
enough to have reached a balanced number of outstanding debt instruments over time,
so though some debt may mature before the maturity of the CDS, in all likelihood new
debt will be issued instead. Based on this assumption we next present our methodology.
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Denote by G(t, dπ) the K-dimensional distribution (under the martingale measure Q)
on [0, 1]K of the random vector π of recovery rates conditional on default happening in the
infinitesimal time interval 〈t, t + dt]. The randomness is introduced ad hoc because the
present literature does not yet agree about which fundamental factors (such as the firm’s
asset value, bond maturity or coupon amount) influence the bond value at default and
how. For this reason we deliberately leave aside the potential origin of the differences in
recovery rates wanting to focus rather on their consequences for now. The only technical
requirement placed on this distribution is integrability with respect to the martingale
measure Q.

The only part of the bond valuation formula (1) affected by these considerations is
the recovery payment in default. In full generality, the time-t value of the now random
recovered amount πk(τ) on bond k, 1 ≤ k ≤ K, with maturity T k is expressed as:

EQ
t

[
πk(τ) P (t, τ) 1{t<τ≤T k}

]
=

∫ T k

t

∫
[0,1]K

πk(s) P (t, s) Q(t, s) G(s, dπ) λ(s) ds

=

∫ T k

t

πe
k(s) P (t, s) Q(t, s) λ(s) ds ,

where πe
k(t) :=

∫
[0,1]K

πk(t) G(t, dπ) denotes the locally (i.e. time-t) expected recovery rate

for bond k.

In general, it is justified to use the locally expected recovery rate when pricing a
corporate bond because its payoff depends linearly on the recovery rate – as is conveniently
the case with both bonds and CDS, but is violated e.g. by recovery swaps.

The modeler is now free to choose the (deterministic) locally expected recovery func-
tion she deems appropriate, though data availability poses considerable constraints, ren-
dering impossible a calibration of both the intensity function and an elaborate recovery
function (potentially even separately for each of the bonds), which leads us to adopt the
following simplifying assumption when pricing bonds:

Assumption 1. (bonds)
All one-dimensional marginal distributions of the vector of recovery rates have identical
expectations regardless of the timing of default:

πe
k(t) = πe ∈ [0, 1] for all 1 ≤ k ≤ K and t ≥ 0.

Since we are only looking at bonds of a single seniority this assumption makes sense
economically nevertheless: Though bonds in the same class are expected to recover iden-
tical amounts in the event of default, the actual realizations need not be equal. Note
also that the assumption corresponds to our recovery specification in the basic model (cf.
Section 2).

Having dealt with bond valuation under random recovery, we next turn to CDS pricing.
The default-contingent payoff of a CDS contract with physical delivery depends on the

17



value of the cheapest-to-deliver bond, i.e. on the minimum recovery rate over all deliverable
obligations at the time of default:

πmin(τ) = min
1≤k≤K

πk(τ).

Analogously to the above, only the default-contingent loss payment in a CDS is affected
by these considerations. In full generality, the present value of the now random loss
compensation 1− πmin(τ) in a CDS with maturity T is expressed as

EQ
t

[
(1− πmin(τ)) P (t, τ) 1{t<τ≤T}

]
=

∫ T

t

∫
[0,1]K

(1− πmin(s)) P (t, s) Q(t, s) G(s, dπ) λ(s) ds

=

∫ T

t

(1− πe
min(s)) P (t, s) Q(t, s) λ(s) ds ,

where πe
min(t) :=

∫
[0,1]K

πmin(t) G(t, dπ) denotes the locally (i.e. time-t) expected minimum
recovery rate.

Once more, the modeler is now free to choose an appropriate (deterministic) locally
expected minimum recovery function, but the data pose restrictions again. Therefore, we
abstain from calibrating a complex minimum recovery function, but adopt the following
simplifying assumption when pricing CDS in the extended setting:

Assumption 2. (CDS)
The distribution of the locally expected minimum recovery rate has identical expectations
regardless of the timing of default:

πe
min(t) = πe

min ∈ [0, 1] for all t ≥ 0.

πe
min therefore represents the expected value of the cheapest-to-deliver bond, identical

for all possible default times. Thus, the main consequence of our extension is that the
expected recovery rate for each bond πe and the expected minimum recovery rate πe

min in
the CDS are now allowed to differ.

In the implementation, we fix the recovery rate for each individual bond (at 40%) as
in standard credit risk models. Additionally the implied minimum recovery parameter
is calibrated to CDS data. For the purpose of measuring the influence of the delivery
option this parameterization is sufficient, since the implicit value of the delivery option is
reflected by the difference in the recoveries.

We calibrate the implied minimum recovery parameter every day to CDS data of
each issuer. Suppressing the issuer and day indices, let there be J CDS available with
observable market quotes pmkt

j , 1 ≤ j ≤ J . The implied expected minimum recovery
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parameter is obtained by minimizing the mean absolute CDS pricing errors of the model:

πe
min = arg min

π∈[0,1]

1

J

J∑
j=1

∣∣pmkt

j − pj(·, {tjn}, π; θ∗)
∣∣ ,

where θ∗ is the parameter vector of the Nelson-Siegel model already calibrated to bond
prices (cf. Section 2.5). As previously, the estimation is implemented via non-linear opti-
mization.

3.4 Results

The average implied minimum recovery lies in the range between 8.87% and 46.34% (cf.
Table 6) and exhibits substantial dispersion among the analyzed obligors. It strongly
varies even within an individual rating and industry class, thereby strengthening our ar-
gument for a firm-specific delivery option. The average standard deviation of the implied
recovery values is approximately 10%, indicating significant fluctuation over time. Figure
4 shows the time series of the implied minimum recovery rate estimated for Daimler-
Chrysler and is representative of the time-series properties for the whole sample. The
implied recovery for DaimlerChrysler averages 11.5% and exhibits a seemingly cyclical or
mean-reverting behavior over time.

The findings indicate that the effect of the delivery option on the CDS spread is strong
enough to result in plausible implied recovery values, i.e. one does not observe a dominance
of boundary solutions (0% or 100%) which would suggest that the delivery option cannot
explain the CDS pricing errors and thus does not drive CDS spreads. Considering the
lowest and highest implied minimum recovery in the time series per obligor (cf. Table 6),
the value of 100% is never estimated as the optimal parameter, whereas for half of the
obligors the value of 0% is estimated at least once, which could be deemed too low and
could indicate that effects other than the delivery option may be at work, which are also
reflected in the calibrated recovery parameter.

Basically, these additional effects could have been introduced by the simplifying as-
sumptions on the recovery parameter. One effect may be a dependence of the minimum
recovery on the CDS maturity because for CDS with longer maturities not all bonds
might be available for delivery in default as some may mature without being replaced.
Furthermore, the default intensity and the recovery rate could be correlated in reality.
Finally, the implied recovery parameter could be driven by other factors, such as liquidity.
All these effects potentially influence the calibrated implied recoveries. For this reason,
we conduct a cross-sectional analysis of the implied recoveries to demonstrate that this
parameter is primarily driven by the value of the delivery option.

Modelling the delivery option by introducing the implied minimum recovery rate we
expect a significant improvement in pricing ability for the CDS market. Table 7 documents
the pricing performance of the extended model on CDS. The average MAE is reduced from

19



24.3 bp to 7.9 bp, resp. from 23.6% to 11.1% expressed as relative error. Compared to the
range of bid-ask spreads of 3 to 10 bp (with the exception of Fiat, where bid-ask spreads
are up to 40 bp), these pricing errors seem acceptable, which is a crucial improvement with
respect to the initial model. From a technical point of view pricing errors are naturally
expected to decrease by adding a further parameter to the model, so as a next step it is
essential to demonstrate that the additional parameter possesses an economic justification.

To this end, we investigate whether the implied recovery rates are linked to factors
driving the value of the delivery option by taking a regression-based approach. Liquidity
proxies are taken into account as control variables in order to test whether liquidity affects
the estimated recovery rates. The following list presents the presumptive proxies for the
value of the delivery option and our hypotheses for their influence on the implied minimum
recovery:

◦ number of bonds:
The more bonds available for delivery, the lower the expected minimum price in
default, which is exactly the recovery of the cheapest-to-deliver bond. In our data
set the average number of available bonds per obligor is in the range from two to
seven bonds.

◦ maximum bond price difference:
The maximum bond price difference is defined as the difference between the highest
and the lowest market bond price. If the difference persists in default, corporates
with higher price differences will exhibit lower implied recovery rates. In our sample
the average maximum bond price differences lie in the range from 2.56 to 15.74.

◦ absolute bond pricing error:
In principle, pricing errors indicate that there exist bonds whose market values de-
viate from their model prices. If the magnitude of the deviations persists in default,
corporates with higher bond absolute pricing errors will exhibit lower implied re-
covery rates. As displayed in Table 7, in our sample the bond MAE is in the range
from 0.24 bp to 39.06 bp.

◦ minimum bond pricing error:
The minimum bond pricing error is defined as the pricing error of the bond with the
largest deviation below its model price. If the magnitude of the deviations persists
in default, corporates with higher minimum bond pricing errors will exhibit lower
implied recovery rates. In our sample the average minimum bond pricing errors fall
in the range from 0.003 bp to 63.6 bp.

The following liquidity proxies are also included in the regressions: the average bid-ask
spread (between 18.07 bp and 78.03 bp), the notional amount outstanding (in the range
0.6 bn to 2.5 bn euro), the average bond coupon (4.34% to 6.27%) and the rating (cf.
Table 2), all employed in Longstaff, Mithal and Neis [21] as well.
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Time averages of the implied minimum recovery values and all explanatory variables
are determined for each obligor and the implied recovery rate is cross-sectionally regressed
separately against each proxy. Table 8 presents the regression statistics. All four variables
representing the delivery option are both statistically and economically significant, and
the hypothesized sign of the respective coefficients is confirmed. Based on the R2, the
number of bonds and the minimum bond pricing errors have the highest explanatory
power. Interpreting the influence of these two factors, it follows that the implied minimum
recovery decreases by 6% on average if an additional bond is available, and by 5.4% on
average if the minimum bond pricing error increases by 10 bp. Due to the small cross-
section of only twelve obligors, one needs to examine whether the significance of the
parameters in the regressions possibly stems from outliers. To this end, we plot the data
sets and lay the respective regression lines on top, but no indication of such misfitting is
found. As a representative example the scatter plot of the average implied recovery rate
against the number of bonds is included in Figure 5.

On the other hand, all four variables representing liquidity are statistically insignificant
and not even close to the 90% confidence interval, indicating that in our sample there is
no serious influence of liquidity on the estimated implied recovery rates – at least not the
way we measure it. The importance of including the delivery option into credit pricing
models is thereby further strengthened. As a consistency check the time series is split
into two parts (2003 and 2004), and the cross-sectional regression analysis repeated on
both subperiods, but the results stay virtually the same (details not reported).

Finally, a time series analysis is performed for each obligor to explore the effect of the
implied recovery rate on the CDS spread. Since the CDS spread is driven both by default
risk and by recovery risk, the implied recovery rate is expected to account for part of the
observed variation in CDS spreads over time, i.e. an increase in the recovery rate should
result in a decrease of the CDS spread. To explore this relation we specify a univariate
time series model for the CDS spread and include the recovery rate as an explanatory
variable. The autocorrelation structure of CDS spreads is taken into account by modelling
first differences as an MA(1) process. First differences of the implied recovery rate are
added to this model setup as an explanatory variable. Table 9 contains the main regression
statistics. The coefficients of the implied recovery rate exhibit the expected negative sign
for all obligors, meaning that a decrease in the implied recovery rate induces an increase in
the CDS spread, and for ten out of twelve obligors the implied recovery rate is significant
for explaining the CDS spread (even after accounting for autocorrelation effects, which
itself could be caused by recovery risk). Lastly, one notices that there exist differences in
the relative importance of default risk and recovery rate risk for the individual obligors,
as indicated by the differing R2 levels.
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4 Conclusion

The tremendous growth rates and the increasing diversity of products in the credit risk
market are continuously calling for the development of more and more sophisticated pric-
ing methods. As shown in recent academic studies, under standard assumptions reduced-
form credit risk models are not fully capable of accurately pricing the two fundamental
credit risk instruments – bonds and credit default swaps (CDS) – simultaneously.

Using a data set of euro-denominated corporate bonds and CDS this paper quantifies
the mispricing observed when employing a deterministic reduced-form framework. In an
extensive comparison of the pricing properties in the bond market for several parameter-
izations of the default intensity the Nelson-Siegel specification turns out to be optimal.
This parametrization is subsequently used to price CDS, resulting in model CDS spreads
up to 50% lower on average than observed in the market.

The traditionally popular explanation for real-world imperfections in credit markets –
liquidity – has already been thoroughly analyzed in academic literature, yet with conflict-
ing conclusions. The studies fail to unambiguously answer questions such as which market
is more liquid or whether liquidity is priced at all. In this paper an alternative extension
is therefore presented which models the delivery option implicit in CDS contracts: Since
in default a basket of bonds is deliverable, the effect of the cheapest-to-deliver bond price
needs to be accounted for in CDS valuation. By using a constant recovery rate standard
credit risk models assume equal recoveries for all bonds, and hence implicitly assume zero
value for the delivery option.

Contradicting this common modelling assumption, case studies of recent Chapter 11
filings presented in this paper illustrate that bonds of a defaulted obligor do not trade
at equal levels following default. Our extension therefore models the implied expected
recovery rate of the cheapest-to-deliver bond and, applied to the data, it largely eliminates
the mispricing. The calibrated recovery values lie in the range between 8% and 47% for
the different obligors, exhibiting strong variation among rating classes and industries. A
cross-sectional analysis reveals that the implied recovery parameter depends on proxies
for the delivery option: The variables with the highest explanatory power are the number
of available bonds and the bond pricing errors. No evidence is found for the influence of
liquidity proxies.

Our paper thus points out the necessity for incorporating the random structure of
recovery rates at default into credit risk models in order to accurately price credit-risky
instruments.
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functional forms free parameters

linear α0 + α1t 2

quadratic α0 + α1t + α2t
2 3

cubic α0 + α1t + α2t
2 + α3t

3 4

log-linear α0 + α1t + κ1

1+t
3

Nelson-Siegel β0 + β1e
− t

κ1 + β2
t

κ1
e
− t

κ1 4

Svensson β0 + β1e
− t

κ1 + β2
t

κ1
e
− t

κ1 + β3
t

κ2
e
− t

κ2 6

Table 1: Specifications of the intensity function examined. αi, βi and κi denote the
model parameters satisfying the usual constraints for the Nelson-Siegel and Svensson
parameterizations. The term log-linear applies here to the integrated intensity function.

obligor Moody’s rating industry

Rabobank Aaa Banking

ABN AMRO Aa3 Banking

Siemens Aa3 Electrical Equipment

Aventis A1 Pharmaceuticals

British American Tobacco (BAT) A2 Tobacco

Commerzbank A2 Banking

Bayer A3 Pharmaceuticals

DaimlerChrysler A3 Automobiles

France Telecom A3 Telecom

Philips Baa1 Electronics

Telecom Italia Baa2 Telecom

Fiat Ba3 Automobiles

Table 2: Obligors selected for the study with corresponding rating and industry.
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obligor linear quadratic cubic log-linear Nelson-Siegel Svensson
Rabobank 16.32 bp 15.01 bp 15.76 bp 17.39 bp 15.35 bp 15.58 bp
ABN AMRO 7.27 bp 4.47 bp 7.37 bp 5.01 bp 9.59 bp 5.81 bp
Siemens 3.64 bp 1.97 bp 5.52 bp 0.14 bp 1.22 bp 3.62 bp
Aventis 4.47 bp 4.22 bp 4.12 bp 0.14 bp 0.24 bp 1.30 bp
BAT 47.08 bp 17.40 bp 8.84 bp 11.19 bp 5.65 bp 2.01 bp
Commerzbank 9.05 bp 7.27 bp 8.77 bp 9.70 bp 13.16 bp 11.63 bp
Bayer 35.58 bp 17.39 bp 15.08 bp 8.36 bp 1.70 bp 3.92 bp
DaimlerChrysler 56.13 bp 36.66 bp 12.83 bp 10.50 bp 9.37 bp 7.62 bp
France Telecom 32.04 bp 16.10 bp 16.24 bp 46.88 bp 15.23 bp 16.67 bp
Philips 26.00 bp 10.98 bp 9.78 bp 7.17 bp 2.15 bp 3.10 bp
Telecom Italia 43.04 bp 22.13 bp 18.76 bp 13.87 bp 2.78 bp 3.69 bp
Fiat 216.43 bp 152.49 bp 44.18 bp 48.64 bp 39.06 bp 33.25 bp
overall 41.42 bp 25.51 bp 13.94 bp 14.92 bp 9.62 bp 9.02 bp

Table 3: Mean absolute pricing errors (MAE) for the bonds of each obligor over the period
examined for the six specifications of the intensity function.

bonds CDS
obligor ME MAE ME MRE MAE MRAE
Rabobank −0.98 bp 15.35 bp −5.03 bp −52.48% 5.51 bp 57.53%
ABN AMRO 0.52 bp 9.59 bp −2.12 bp −12.25% 3.02 bp 17.41%
Siemens −1.22 bp 1.22 bp −5.73 bp −19.78% 8.04 bp 27.73%
Aventis −0.24 bp 0.24 bp 4.95 bp 26.90% 5.11 bp 27.74%
BAT −2.06 bp 5.65 bp 6.85 bp 9.53% 7.37 bp 10.25%
Commerzbank −2.18 bp 13.16 bp −8.62 bp −26.31% 9.17 bp 28.02%
Bayer −1.69 bp 1.70 bp 6.36 bp 10.60% 7.26 bp 12.10%
DaimlerChrysler −1.69 bp 9.37 bp −26.83 bp −28.80% 27.27 bp 29.27%
France Telecom −1.55 bp 15.23 bp −13.62 bp −16.30% 14.52 bp 17.37%
Philips −1.55 bp 2.15 bp 0.56 bp 1.01% 6.23 bp 11.21%
Telecom Italia −1.11 bp 2.78 bp −4.80 bp −5.93% 8.43 bp 10.40%
Fiat −5.38 bp 39.06 bp −186.80 bp −37.38% 189.63 bp 37.95%
overall 9.62 bp 24.30 bp 23.92%

Table 4: Pricing properties over the period examined for the Nelson-Siegel specification of
the intensity function. Reported are the mean pricing errors (ME) and the mean absolute
pricing errors (MAE) of both bonds and CDS, as well as the mean relative pricing errors
(MRE) and the mean relative absolute pricing errors (MRAE) for CDS. A negative value
means that the model price resp. spread lies below the one observed in the market.
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Delta Northwest Delphi

Chapter 11 filing 14.09.2005 14.09.2005 08.10.2005
Day of default 14.09.2005 14.09.2005 10.10.2005
Observation period 09/2005 09/2005 10/2005

Contemporaneous (maximum) price differences on default day:

Closing price 1.81 6.00 1.50
Lower bound 4.42 3.39 3.00
Upper bound 8.87 12.40 8.50

Prices in the post-default period:

Minimum price 9.58 19.50 49.20
Maximum price 22.00 32.00 70.50

Table 5: Summarized details of case studies of defaults (differences resp. prices per 100
of face value).

mean std. dev. min max
Rabobank 8.87% 18.72% 0.00% 73.61%
ABN AMRO 35.34% 12.88% 0.00% 61.54%
Siemens 31.86% 9.86% 0.00% 57.68%
Aventis 46.11% 6.91% 24.50% 62.98%
BAT 45.93% 4.37% 24.88% 74.86%
Commerzbank 27.14% 13.32% 0.00% 58.87%
Bayer 46.34% 4.97% 29.92% 71.11%
DaimlerChrysler 11.48% 9.55% 0.00% 33.62%
France Telecom 29.97% 6.78% 0.00% 73.10%
Philips 43.91% 6.85% 31.34% 81.83%
Telecom Italia 33.37% 8.14% 15.50% 52.65%
Fiat 13.74% 13.42% 0.00% 53.19%

Table 6: Descriptive statistics of the implied minimum recovery rate.
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bonds CDS
obligor ME MAE ME MRE MAE MRAE
Rabobank −0.98 bp 15.35 bp −3.23 bp −33.74% 3.55 bp 37.02%
ABN AMRO 0.52 bp 9.59 bp −1.24 bp −7.15% 1.76 bp 10.15%
Siemens −1.22 bp 1.22 bp −2.50 bp −8.64% 5.30 bp 18.27%
Aventis −0.24 bp 0.24 bp 2.45 bp 13.31% 3.17 bp 17.23%
BAT −2.06 bp 5.65 bp −0.71 bp −0.99% 0.75 bp 1.04%
Commerzbank −2.18 bp 13.16 bp −3.18 bp −9.72% 3.35 bp 10.22%
Bayer −1.69 bp 1.70 bp 0.55 bp 0.91% 1.78 bp 2.97%
DaimlerChrysler −1.69 bp 9.37 bp 2.38 bp 2.56% 6.84 bp 7.34%
France Telecom −1.55 bp 15.23 bp −3.57 bp −4.27% 6.75 bp 8.08%
Philips −1.55 bp 2.15 bp −3.30 bp −5.94% 3.42 bp 6.16%
Telecom Italia −1.11 bp 2.78 bp 1.54 bp 1.90% 2.63 bp 3.25%
Fiat −5.38 bp 39.06 bp −46.96 bp −9.40% 55.04 bp 11.02%
overall 9.62 bp 7.86 bp 11.06%

Table 7: Pricing properties over the period examined of the extended model. Reported
are the mean pricing errors (ME) and the mean absolute pricing errors (MAE) of both
bonds and CDS, as well as the mean relative pricing errors (MRE) and the mean relative
absolute pricing errors (MRAE) for CDS. A negative value means that the model price
resp. spread lies below the one observed in the market.

constant coefficient p-value R2

nr of bonds 0.5481 −0.0634 0.0004 73.25%
max. price difference 0.4865 −0.0237 0.0041 57.73%
abs. bond error 0.3936 −0.0085 0.0168 45.07%
min. bond error 0.4017 −0.0054 0.0025 61.47%
bid-ask spread 0.3637 −0.0016 0.5732 3.28%
principal 0.1702 0.0001 0.1693 17.99%
coupon 0.2803 0.0060 0.9393 0.06%
rating 0.3176 −0.0009 0.9514 0.04%

Table 8: Results of the univariate cross-sectional regressions of the implied minimum
recovery rate on proxies of the delivery option and liquidity.
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obligor constant recovery MA(1) R2

Rabobank −0.0182 −0.0453*** −0.6001*** 30.76%
ABN AMRO −0.0440 −0.0099 −0.2683*** 6.91%
Siemens −0.1231*** −0.0575*** −0.3214*** 18.56%
Aventis −0.0108 −0.1693*** −0.3004*** 32.74%
BAT −0.0618 −0.6468*** −0.1806*** 13.81%
Commerzbank −0.2229 −0.0200* 0.1147* 1.67%
Bayer −0.1580 −0.5343*** 0.2068*** 9.92%
DaimlerChrysler −0.1814 −0.2717*** −0.3805*** 16.39%
France Telecom −0.6065*** −0.1965*** −0.2595*** 10.40%
Philips −0.2009** −0.0330 −0.0604 0.93%
Telecom Italia −0.1696 −0.4968*** −0.1260** 23.04%
Fiat −1.0284 −1.4342*** −0.1160** 6.93%

Table 9: Results of the time-series regressions of the first differences of CDS spreads on
an MA(1) term and first differences of the implied minimum recovery time series. The
asterisk indicates significance at the 90% (*), 95% (**) and 99% (***) level.
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Figure 1: Time series of CDS relative errors for DaimlerChrysler, where a negative value
means that the model spread lies below the one observed in the market.
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Figure 2: Daily average closing prices for bonds in the month of default. The vertical line
indicates the day of the Chapter 11 filing.
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Figure 3: Daily lower and upper bound for the contemporaneous maximum bond price
differences in the month of default. The vertical line indicates the day of the Chapter 11
filing.
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Figure 4: Time series of the implied minimum recovery rate for DaimlerChrysler.
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Figure 5: Cross-sectional scatter plot of the average implied minimum recovery rate
against the average number of bonds per day.
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