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An alternative model to forecast default based on Black-Scholes-Merton 

model and a liquidity proxy 

 

Abstract 

Building upon the theoretical Black-Scholes-Merton model, we develop an alternative model 

to forecast default. Without solving the required nonlinear equations, we deviate from 

Bharath and Shumway (2008) approach by estimating volatility in a simpler manner. Similar 

to Charitou and Trigeorgis (2006), we consider the probability of intermediate involuntary 

default before debt-maturity which we capture via a liquidity proxy. Finally, we use a 

weighted average life of total debt as time-to-option-maturity. Cox proportional hazard 

models and several approaches that test the model predictive ability suggest that our 

alternatives indicate higher sufficient statistic and ability to forecast default. 

 

JEL codes: G33, G3, G0, M4 
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1.  Introduction  

This study focuses on developing a simple and rational model to forecast default that 

has its basic intuition behind the standard option-pricing theory. Merton (1974, 1977) 

investigates bankruptcy based on the Black and Scholes (1973) option-pricing theory, the 

known as the Black-Scholes-Merton model [hereafter BSM-model]. According to the BSM-

model, the equity of a levered firm can be viewed as a call option on the value of the firm 

assets V. When V falls below the face value of liabilities ,)(B )( BV < , the call option is left 

unexercised and the bankrupt firm is turned into its debt-holders. The firm voluntary defaults, 

since equity holders equity-holders (the residual claimants of firm value) have no positive 

pay-off to exercise the option )}0,max({ BVE −= .  

The BSM-model assumes the option time-to-maturity equals the time-to-debt maturity. 

Hence, it ignores the possibility of involuntary default before maturity. Moody’s-KMV model 

uses option-pricing theory on a discrete hazard model and recognizes that default may be 

triggered by firm inability to meet any scheduled payment before maturity [hereafter KMV-

Merton]. They follow the algorithms of BSM-model to estimate firm value and its 

volatility

)(V

)( Vσ and account for the probability of intermediate default by adjusting the default 

boundary downward at a maturity based on their proprietary database and experience to 

(B=current liabilities + 0.5*long-term liabilities). They primarily focus on a distance-to-

default measure, defined as the difference between the firm value and its default point (debt 

amount due), divided by the firm volatility. It defines the distance of firm value (V) from the 

default point (B), measured in units of firm standard deviation )( Vσ . More specifically, how 

many standard deviations (the equity-holder call option is in-the-money) it takes for firm value 

to move down before it can trigger bankruptcy filing.  

Bharath and Shumway (2008) [hereafter BS] follow KMV-Merton distance-to-default 

measure, without following the algorithms specified by the Merton distance-to-default (they 
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do not solve the simultaneous nonlinear equations required by BSM-model, in order to assess 

the firm value and its volatility). Contrary, their “naive” probability is estimated by using 

market observable variables. Firm value is defined as the sum of firm value and face value of 

debt, whereas volatility is estimated on historic firm returns. They argue the BSM-model is 

not a sufficient statistic for forecasting bankruptcy. Their default measure appears to produce 

more sufficient statistic. Accepting this approach, the methodology for estimating volatility to 

apply the BSM-model should not be important.  

Hence, our first hypothesis examines whether a simpler approach would still provide 

similar or more sufficient statistic. We calculate the value volatility following the BS 

approach )( ][BSVσ  and estimating the option variables using items directly observed by the 

market. We also apply a simpler approach )( ][DLCTVσ again without solving the equations 

implied by the BSM-model.  

However, instead of using the KMV distance-to-default, we use a more direct proxy that 

captures the information provided by the KMV-measure. Similar to Charitou and Trigeorgis 

(2006), we extend the theoretical BSM-model into a European compound call option (Geske, 

1979) that triggers default when firm value falls below the default boundary. Such case would 

imply that the firm has insufficient cash flows to meet its intermediate interest and debt 

repayment instalments. Thus, it will involuntary default at a time before debt maturity. To 

capture the intermediate default probability, we use a cash-flow coverage ratio that covers 

firm inability to meet its intermediate interest and debt payments (we maintain the original 

default boundary, B=current + long term debt).  

Existing studies argue that adding market variables along with accounting variables 

helps in improving forecast accuracy (Shumway, 2001; Hillegeist et al., 2004). Hence, the 

liquidity proxy derives from accounting measures and is included into the BSM-model as an 

option variable. On that basis, our second hypothesis examines the ability of our extended 
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measure to forecast default. It captures the possibility of earlier default separately (via a 

transformation of the cash flow coverage), without solving the simultaneous equations of the 

BSM-model.  

Finally, it is common for researchers to use a forecasting horizon of 1 year (T=1). 

Nonetheless, this is a simplistic assumption as any default boundary used has time-to-

maturity more than one year, which restrict the BSM-model assumptions (Hillegeist et al., 

2004). According to this, our third hypothesis examines whether the estimation method of the 

time-to-option maturity has significant impact on the probability of default as employed by 

KMV-model. Beyond the T=1, we follow the approach of Charitou and Trigeorgis (2006) 

and use an additional alternative of T that equals the weighted average life of total debt. 

We apply Cox proportional hazard models in a sample of 7,833 U.S. firms (1,269 firms 

that filed for bankruptcy and 6,564 available healthy firms). We first estimate their goodness 

of fit Cox partial -2LogLikelihood and rank the competitive models fit according to their AIC 

information criterion (Akaike, 1974). To examine their predictive ability and test if our 

extended measure has more or less predictive ability, we examine the area under the ROC 

curve (Vassalou and Xing, 2004; Agarwal and Taffler, 2008) and their predictive ability 

deriving from out-of-sample tests (Shumway, 2001; Bharath and Shumway, 2008). Our 

findings suggest that our methodology provides sufficient statistic which is similar or higher 

than that provided by BS and therefore, it slightly outperforms the information provided by 

the KMV-Merton model.  

The remainder of the paper is organized as follows. Section two describes the theoretical 

framework of the standard option pricing theory of Black and Scholes (1973) and Merton (1974, 

1977), the KMV-Merton model and the methodology employed by Bharath and Shumway 

(2008). It also explains the extended compound call option for intermediate default and liquidity 
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proxy (Geske, 1979). Section three describes our research design, whereas section four discusses 

our empirical findings. The last section concludes. 

 

2. Theoretical Framework 

2.1. The BSM Option-Pricing Model of Business Default 

Firm value  is assumed to follow a Geometric Brownian Motion tV

dzdtDVdV Vtt σα +−= )( , where α  represents the total expected rate of return on firm 

value, D the total payout (% of V ), Vσ the standard deviation of the firm value returns and 

 an increment of a standard Wiener process. Merton (1974, 1977) suggests that any claim 

whose value is contingent on a traded asset with value V, having a payout D and time to 

maturity T must satisfy the fundamental partial differential equation (p.d.e.):    

        (1) 

dz

0)22 =+−− dFFVFFV TVW γ(+ −r Dσ

where d is the payout from the firm to the particular contingent claim F.  Solution to the p.d.e. is 

given by the Black-Scholes formula for a European call option, on a dividend-paying asset:  

                                  (2) )()(),( 21 dNBedNVeTVE rTDT −− −=

where 
T

TDrB
V

d
V

V

σ

σ )5.0()ln( 2

1

+−+
=         (3) 

 
T

TDrB
V

Tdd
V

V
V

σ

σ
σ

)5.0()ln( 2

12

−−+
=−=         (4) 

where   E = European call option (firm equity), B = face value (principal) of the debt, V = value 

of firm assets, D = total constant payout yield, σV = standard deviation of firm value changes 

(returns in V), T = time to debt maturity, r = risk-free interest rate, = cumulative 

standard normal distribution function (from -∞  to d). 

)(dN
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 The term )(  is the discounted expected value of the firm if it is solvent. is the 

present value of the principal debt B, and is the risk-neutral probability the firm to be 

solvent at maturity T, . The risk-neutral probability of default at the debt maturity is 

given by:

dVN

Pr

rTBe−

)( 2dN

).( BVob T <

})2 TVσ5.0()ln({)((1.Pr 2 T
DrBVNdNDefault

Vσ
−−+

−=−− )2 Nd =−)( BVob t =<Pr=    (5) 

The probability is driven by the five primary option-pricing variables as described in BSM-

model formula (equation 3): )}(,,),ln(),{ln()( 2 DrTBVfdN V −=− σ .  

Most applications of BSM-model consider the value of the European option as a 

function of the four variables that are easily observable by the market (V, B, T and r-D) and, 

one variable that can be estimated )( Vσ . However, in the Merton model, the value of the 

option is observed directly from the market as the firm equity E, while the value of firm value 

V and its volatility Vσ  should be inferred. However, under the Merton assumptions, E is a 

function of the firm value and time, which follows Ito’s lemma: VE V
E

E
V σσ

∂
∂

= )( . As in the 

BSM-model )(dN 1V
E

=
∂
∂ , the Merton model assumes the volatilities of the firm and equity 

are related by:     VE dN
E
V σ)()( 1σ =       (6) 

The equity volatility can be estimated by historical stock returns (observable at the 

marketplace similar to the rest four variables). Thus, equations (2) and (6) should be solved 

simultaneously, providing numerical values for all variables required to assess the distance-

to-default  and default probability)( 2d ))(( 2dN − . 

 

2.2. KMV-Merton Model 

The method employed by Moody’s corporation, the known KMV-Merton model, builds 

upon the BSM-model to allow for various classes and maturities of debt. The value of the 
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European option is directly observable by the market (the equity, E) while the underlying 

asset value (V) and its volatility (σV ) are inferred. The KMV-Merton model estimates 

the Eσ from historical stock returns or option implied volatility data. It chooses a forecasting 

time horizon and measure the relative default boundary  (current + 0.5*long-term 

liabilities). After having values of the marketable variables they simultaneously solve 

equations (2) and (6) to estimate V and σV. Once this numerical solution is obtained, they 

calculate their distance-to-default measure (DD): 

KMVB

T

TBKMV

V
DD

V

V

σ

σμ )5.0()ln( 2−+
=  (7) 

Based on the BSM-model, the probability of default equals to , and thus to )( DDN −

}
)5.0()ln(

{)(
2

T

TB
V

NDDN
V

V

σ

σμ −+
−=− . However, the KMV-Merton model does not use 

the cumulative normal distribution to convert the DD to default probabilities. Moody’s KMV 

uses its large historical database. It estimates the empirical distribution of DD, based on 

which it calculates the default probabilities.  

Thus, exact replications of the KMV-Merton model are not feasible. Not only because 

of their probability of default, but also because of the likelihood that Moody’s KMV makes 

adjustments to the accounting information used to calculate their default boundary due to the 

several modelling choices they have. Still, recent academic articles examining default such as 

Vassalou and Xing (2004), Duffie et al. (2007), Cambel et al. (2008) adopt the arbitrary 

default boundary of KMV-Merton model. We do not examine these latest models, as they are 

beyond the scope of this article. 

 

2.3. Bharath and Shumway (2008) measure [BS] 
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BS develop a simple predictor for distance-to-default without solving the nonlinear 

equations required by the BSM-model. They suggest that all option variables should be 

observable from the marketplace, assuming the market is efficient and well informed. Thus, firm 

value is defined as the summation of the firm equity and debt, BEV += . Equity E is defined as 

the shares outstanding multiplied by the market price, whereas B is the KMV-Merton default 

boundary  . After estimating V, they approximate the volatility of each firm debt 

as

)( KMVB

EB σσ 25.005.0 += , and the firm volatility as the weighted average volatility of E and : 

    

KMVB

B
KMV

EBSV
B

BEBE
E σσσ +
+ +

=][      (8) 

They set the expected firm return equal to the firm stock return over the previous year and 

calculate their DD equal to: 
T

TB
V

DD
V

BSVKMV
BS

σ

σμ )5.0()ln( 2
][−+

=      (9)  

and the probability of default to }
)5.0()ln(

{)(
2

T

TB
V

NDDN
V

V
BS σ

σμ −+
−=−       (10) 

Similar to KMV-Merton model, they use a time to debt maturity 1 year (T=1). 

 

2.4. Extension of BSM -Model for Intermediate Default  

The BSM-model above assumes that the firm debt mature in T periods, while in real world 

firms have obligations at intermediate times )( TT <′ . Consider “I” the firm intermediate 

obligations. I represents interest and debt repayment instalments payable at intermediate times 

before debt maturity. Within this context, the option can be treated as compound option where 

each payment I constitutes the exercise price that must be paid in order to continue to the next 

stage. If at intermediate time 'T the firm value  is lower than its interest and debt payment I 

, equity-holders will involuntary default. The payment I due at intermediate time 

TV ′

)( IVT <′

'T )( TT <′ , gives equity-holders the option to continue with the option to acquire the firm at 
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debt maturity T. Thus, the value of equity can be seen as a call-on-a-call or a compound call 

option. Geske (1979) derived a model to value compound options:  

    (11) )();,();,(),( 22211 dNIeddNBeddVNTVE rTr ′−′−′= −′− τρρ

where }
)5.0('ln

{),(
2

1
΄

T΄DrV
V

Vd
V

V

Τ

+−+
=′′

σ

σ
τ       (12) 

 }
)5.0('ln

{),(
2

122 T΄

T΄DrV
V

TdTVdd
V

V

σ

σ
σ

−−+
=′−′=′′′≡′    (13) 

 and are as earlier (equations 3 and 4, respectively) 1d 2d

Notation: 

• N(d) = univariate cumulative standard normal distribution function (from -∞  to d) 

• N(a, b; ρ) = bivariate cumulative standard normal distribution function with upper integral 

limits a and b and correlation coefficient ρ, where T
T΄=ρ . The bivariate cumulative 

normal distribution N(-d΄2 , -d2 ; ρ) represents the probability that equity-holders exercise their 

call option by paying off the principal B at the maturity, given that they previously decide to 

keep alive their option to continue.  

• V΄ is the cut-off firm value V at the intermediate time T' when payment I comes due. 

• The volatility parameter Vσ  is not constant, but depends on the value of the firm. 

 In this option-based formulation, equity-holders may default not only at the debt maturity 

T (VT < B), but also at an intermediate time T', just before the payment I comes due. That is the 

case of the firm value at time T' to fall below its cut-off option value )( VVV T ′<′ ′ .  This default 

probability at an intermediate time T' is given by: 

         )()(1}),({Pr)(Pr.Pr 22)'( dNdNITVEobVVobdefaultob TT ′−=′−=<′′=′<= ′  (14) 

where is estimated as in equation (13).  2d ′
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However, even when the firm is profitable and equity is valuable, and 

, default may additionally be triggered when firm has insufficient cash flows to pay for 

the next I, . 

ITVE >′′ ),(

BVT >

)( ICFT <′

 

3. Research design 

3.1. Liquidity proxy and distance-to-default measure 

Within the context of intermediate default, Charitou and Trigeorgis (2006) develop a 

distance to default measure which includes a cash-flow variable as an option variable. In a 

similar vein, we use a variation of the liquidity variable to capture firm ability to generate cash 

to cover its interest expense and debt repayment obligations, at a given time before debt 

maturity. The cash flow coverage-ratio is defined as: 

    
)

1
.PrRe

(

& 1

TaxRate
DividendsefpaymentDept

penseInterestEx

lentsCashEquivaCashnsomOperatioCashFlowFr
CFC

tt
t

tt

−
+

+

+
=

−
   (15) 

The numerator represents the available cash-flow, whilst the denominator represents the 

cash obligations, over an intermediate time periodT ′ .1 Therefore, if the firm has sufficient cash 

flows to pay its upcoming debts, CFC will be higher than 1 (CFC>1). Otherwise, if CFC<1, its 

upcoming debts are higher than its cash flows and thus, its probability of default should be high. 

Hence, negative relation of the CFC with the default probability is expected. 

Assuming the cash flow from operations (CFO) is a constant proportion of the firm value 

at timeT ′ )( TcVCFO ′= , it will trigger involuntary early default if the intermediate payment I is 

higher than the CFO+ (cash). Thus, , whilst the 

cumulative intermediate probability of default should be:  

lentsCashEquivaCash & )( cashcVI T +> ′

                                                 
1 Charitou and Trigeorgis (2006) subtract the Cash & Cash Equivalents from the denominator, arguing that 
some cash & cash equivalents might already been in place when the intermediate payment for interest or debt 
repayment come due. They also waive preference dividends and tax payments, as they can be deferred without 
triggering bankruptcy. As their ratio might not be well defined for negative values, we include the available cash 
and payments due in the numerator and denominator, respectively. 
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 )()1(Pr))((Pr.Pr 2dNCFCobcTcashIobdefaultob T ′′−=<=>−= ′   (16) 

where  
´

´)5.0()ln( 2

2 T
TDrCFC

d
V

V

σ
σ−−+

=′′ .         

Instead of using the risk neutral probability to default (r-D), we use an empirical model 

with an option variable the difference between the firm value return  and the firm payout 

yield D (the coupon interest payment plus dividends at fiscal year end). However, as  is 

sometimes negative or lower than riskless rate r, firms are assumed to obtain the maximum 

return between  and r 

VR

VR

VR )},max({ rR=μ , having a DD: 

    
´

´)5.0()ln( 2

2 T
TDCFC

d
V

V

σ
σμ −−+

=′′      (17) 

Thus, our default probability is )
´

´)5.0()ln(
()(

2

2 T
TDCFC

NdN
V

V

σ
σμ −−+

−=′′−   (18) 

Similar to CFC, (μ - D) is also negatively related to the default probability. As is the 

annually standard deviation of firm return (% of V), is proxy for risk, it has positive relationship 

with the option to default; the greater the the greater the default option value. T is the time to 

debt maturity, whereas T΄ is the time to the next intermediate I. All else equal, the longer the 

maturity the greater the default option value.  

Vσ

Vσ

Considering the components of DD and )( DDN −  of the KMV-model (equation 8), our 

default variable (equation 18) incorporates the information content provided by the KMV-

Merton model. As we also account for the dividend payments (contrary to KMV-Merton 

model) and capture the probability of intermediate default via the CFC, our DD measure 

should improve the KMV-Merton model as well as the BS.2  

 

3.2. Data and Option variable calculations 

                                                 
2 Further methodological differences of the two models are described in the following section. 
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The dataset used consists of a sample of 1269 U.S. industrial firms that filed for 

bankruptcy during the 1983–2001 periods and have data available in the Compustat and 

CRSP databases. We require the firms to be identified in the Wall Street Journal or in the 

Internet Bankruptcy Library as having filed for bankruptcy. We also use a sample of 6564 

available healthy firms, resulting to a total sample of 7833 firms.  To estimate option 

variables, we follow the BS approach and do not apply the algorithms required by the BSM-

model. All items used are directly collected from the marker.  

First, the market firm value (V) is set equal to V= E + B. E represents firm equity, 

defined as the number of shares outstanding multiplied with their market price (Compustat 

items #A25 and #A24, respectively). Regarding the B, we maintain the original default 

boundary which equals the face value of total debt (book value of total liabilities #A181).  

The standard deviation on firm asset value is first estimated as suggested by BS, ][BSVσ . 

As the debt volatility is a function of the equity return volatility )E25.005.0( B σσ += , we 

estimate the monthly return on equity, adjusted for dividend payments: }
1−

+

t

t

E
DV

ln{, = t
tE

E
R , 

where is the cash dividends (#A127). E is the monthly firm equity as estimated earlier. 

Using a window of 60 months, we calculate 

tDV

Eσ  and then assess the BS volatility (equation 9). 

We then calculate our simpler alternative ][DLCTVσ , by estimating the annually standard 

deviation derived by the monthly firm return (of V). We do not require the estimations of 

Eσ and Bσ , but the volatility of the monthly return on V. Thus, the first step is to calculate the 

monthly V. As V=E+B, we estimate the equity (E) and debt (B) on monthly basis. E is easily 

observable, whereas the monthly B is calculated by transforming the quarterly long-term debt 

(#Q54) into monthly value. For the transformation we use an averaging method based on the 

two surrounding months to estimate the two missing months.  
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Once the monthly V is calculated, the return on its value is defined as: 

}ln{
1−

+
=

t

tt
V V

DV
R , where D is the constant payout yield, set equal to 

1−

+
=

t

tt

V
XINTDVD .   

is the cash dividends (#A127) and  is the Interest Expense (#A15). As mentioned,  is 

sometimes negative or lower than the riskless rate. Thus, we use the maximum return 

between actual and riskless return r, 

tDV

VRtXINT

{ )},max( rR=μ . r is the 3-month US Treasury-bill rate. 

We then estimate the volatility of the monthly  )VR ( ][DLCTVσ , having a 60-month return 

window. If ][DLCTVσ incorporates sufficient information similar to ][BSVσ , the two variables are 

expected to be highly correlated. This would support our first hypothesis. 

Having estimated the necessary items for four of the required option 

variables }),(,,{ VDmBV σ− , T is set equal to one (T=1) when we test the default probability 

in a year, as Helligeist et al (2004) explicitly do. However, we also follow Charitour and 

Trigeorgis (2006) and set the time to option maturity equal to the duration of weighted 

average life of debt maturity:
∑

∑

=

== 20

1

20

1

)(

*)(

t

t
wa

DDtPV

tDDtPV
T , where is the present value of 

debt due in the year t, representing the present value of debt due in each year for the period 

1983 - 2002.

)(DDtPV

3 Our implementation of the duration concept involves an approximation, 

repeated for all years tested resulting to an estimation of the average life of debts, for each 

                                                 
3 For t = 1 to 5, DDt (debt due in year 1…5) was obtained from relative Compustant data items. DD1-debt due in 
one year (item #A44), DD2-debt due in two years (item #A91), DD3-debt due in three years (item #A92), DD4-
debt due in four years (item #A93), DD5-debt due in five years (item #A94). For t > 5 an approximation was used 
by taking account of the total long-term debt (DLTT #49). The model implies that T should be the maturity date for 
all firm debts B. However, it is not possible to calculate T for some liabilities. As an example, current operating 
liabilities typically turn over, which makes it impossible to determine the maturity date for longer-term operating 
liabilities such as deferred income taxes. To estimate the cumulative debt from year 6 and forward, we first 
subtract the sum of DD2 to DD5 from the total long-term debt (DLTT). We then determine the average annual 
debt for the first five-years (debt DD2 to DD5) and ultimately apportion debt to the remaining years (to DD6 up 
to DD20 for the 20 years tested) until the cumulative debt is exhausted up to year 20. 
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year and each firm. The procedure leads in a realistic approximation of the probability to 

default in a time equal to the average debt life.  

Finally, regarding our liquidity proxyCFC  (equation 15), Cash flow from operations 

are proxied by the item #A98, whereas cash & cash equivalents by the #A1. Tax Rate equals 

the total income taxes (item #A16) multiplied by 100 and divided by the pre-tax income (item 

#A170). We use the item #A19 for the Preference Dividends, #A15 for Interest Expense and 

the debt due in one year (DD1 item #A44) for the debt repayment. 

Once calculation of all option variables is completed, we estimate the default variables 

according to BS approach (equation 10 but adjusting for dividend payments and using 

the original default boundary B) and according to our extended compound-call option 

model (equation 17). Both default variables are estimated using our

2d−

2 ′′− d ][DLCTVσ and 

BS ][BSVσ , and also using T=1  and )1T( waTT = . To avoid heavy effect of outliers, we 

winsorize all observations at the 1st and 99th percentiles.  

 

3.3. Empirical models and predictions 

Similar to various researchers we test our default variables running Cox proportional 

hazard models.4 In Cox hazard models with time-varying covariates, the dependent variable 

is the time spent by a firm into the healthy group; the time-to-default (T2D). Bankrupt firms 

prior the filing year are included in the healthy sample, however when they file for 

bankruptcy they leave the healthy sample and join the bankrupt one. For the following years 

they are removed from the samples (censored).  

Proportional hazard models assume the default probability, known as the hazard 

rate )(tλ  increases linearly with time, conditional on the covariates in the model: 

                                                 
4 Among others see Shumway (2001), Chava and Jarrow (2004), Agarwal and Taffler (2008), Bharath and 
Shumway (2008); Duffie et al. (2007). 
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    )])()[exp(()( btxtt ′= φλ                (19) 

where )(tφ is the baseline hazard rate. It depends on time only, without being affected by the 

time-covariates.  allows for the time-to-default to vary according to the firm 

covariates .

))(exp( btx ′

)(tx 5 

To examine our hypotheses we run two sets of empirical models with explanatory 

variables the default measures. The two regression sets defer only in the volatility calculation. 

The first includes our ][DLCTVσ  (DLCT models), whilst the second replicates the same models 

but includes the ][BSVσ  (BS models). To account for the possibility that the overall health of 

the economy drives our measures, each model includes an annual bankruptcy rate . 

It is the number of the corporate bankruptcies divided by the total number of the traded firms 

over the previous year. It is hence expected to indicate high fluctuation along recession and 

expansion periods.  

)(AnRate

 Set 1: DLCT models Set 2: BS models  

Model 1: 

 Model 2: 

Model 3: 

Model 4: 

),2(2 AnRatedfDT DLCT
Twa−=  

),2(2 1 AnRatedfDT DLCT
T−=  

),2(2 2/ AnRatedfDT DLCT
Twa′′−=  

),2(2 2/1 AnRatedfDT DLCT
T′′−=  

),2(2 AnRatedfDT BS
Twa−=  

),2(2 1 AnRatedfDT BS
T−=  

),2(2 2/ AnRatedfDT BS
Twa′′−=  

),2(2 2/1 AnRatedfDT BS
T′′−=  

The default variables assessed using the our volatility are notated as DLCTd2− or DLCTd2′′− , 

whereas those estimated following the BS as or . The notation used is 

consistent with previously. The default variable

BSd2−

2d

BSd2 ′′−

−  is assessed based on BSM-model 

modified by BS (equation 10 but adjusted for dividend payments and using the original 

default boundary B) and  based on our extended option formula via the CFC (equation 2 ′′− d

                                                 
5 For further information on the properties of Cox proportional regression models see Cox and Oakes (1984), 
Lin and Wei (1989), White (1989). 
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17). To distinguish when the T=wa we use the index , whereas tests the default 

probability in a year. When we allow for one intermediate default before debt 

maturity , T is divided by 2, which implicitly assumes the default time will be about 

half of the T.  

Twa 1T

[DLCTV

)2( ′′−d

The two sets of hazard models examine the predictive ability of ]σ in comparison 

][BSVσ  and hence, hypothesis one. Both sets are expected to have sufficient predictive ability, 

suggesting that the BSM-model is not sensitive to the manner firm value and its volatility are 

calculated. Comparing the two sets, we compare which approach captures the highest 

sufficient statistic (DLCT or BS). Similarly, models 3 and 4 of both sets examine the 

predictive ability of our extended option for intermediate default )2( ′′−d , consistent with our 

second hypothesis. Models 1 and 3 are in line with our third hypothesis, examining whether 

the estimation method of the time to option maturity has significant impact on the probability 

of default as employed by KMV-model.  

To examine the models fit and rank the models according to their forecasting ability, we 

use four different tests. We first examine the Cox partial likelihood, where, the closer the log 

likelihood to zero, the better the model fit. The likelihood ratio (-2LL) tests the null 

hypothesis that covariate coefficients are not different from zero. If -2LL test is significant, 

the null hypothesis is rejected suggesting the covariates are contributing to explanation of the 

dependent variable (beyond the baseline hazard). Hence, we expect significant goodness of fit 

test in all tested models. 

Second, the AIC information criterion is used (Akaike, 1974, 1981; Bozdogan, 1987). 

Unlike the Likelihood Ratio Test, AIC criterion is not test in the sense of hypothesis testing, 

but tool for model selection among non-nested models. It offers a relative measure of the 

information lost when a given model is used to describe the tradeoff between bias and 
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variance in model construction. Therefore, competing models are ranked with the one having 

the lowest AIC being the best. We expect to report the lowest AIC value when we estimate 

volatility based on our approach, account for intermediate default via our CFC coverage ratio 

and use the time-to-option maturity equals the weighted average duration of debt life. In other 

words, we expect the 3rd DLCT model to indicate the highest predictive ability. 

Third, we use a Receiver or Relative Operating Characteristic Curve (ROC curve) 

analysis to examine the predictive ability of the models. The ROC curve plots graphically the 

fraction of true positive versus the false positive rate, comparing the two 

characteristics/samples. The accuracy of the test depends on how well the test separates the 

group being tested into bankrupt and healthy, measured by the area under the ROC curve. 

ROC curve analysis is a tool widely used to select possibly optimal models and to discard 

suboptimal ones.6 This approach allows model comparisons and rankings based on the area 

the ROC curve covers. ROC curve ratio indicates the area covered by the model’s average 

function divided by that of a “perfect” model. ROC curve ratio equal to 1 indicates a model 

with “perfect” predictive ability, whereas 0.5 represents a worthless test. We therefore expect 

a close to 1 ROC curve for the models, especially for our 3rd model.  

Ultimately, to robust our results we assess the out-of-sample forecast ability of all 

models (Shumway, 2001; BS; Duffie et al., 2007). Once we estimate the coefficients of each 

hazard model, firms are sorted into probability deciles. Probability deciles represent the 

bankruptcies occurred, documenting the forecasted default percentages. Thus, firms are 

sorted into default percentages. The top decile should predict the highest percentage of 

bankruptcies. To calculate the actual probability that firms in the top decile will default in the 

next period, we should divide the frequency of bankruptcies in that decile with the number of 

bankrupt firms in the model. With this approach we have the ability to rank firms into 

                                                 
6 See Vassalou and Xing (2004), Agarwal and Taffler (2008), Crook (2004), Crook et al. (2007), Stein (2005), 
Blochlinger and Leippold (2006). 
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probability deciles without estimating the actual probabilities of bankruptcy. If models have 

misspecifications, out of sample results are not affected. 

 

Table 1 about here 

4.  Empirical Results  

4.1. Summary and descriptive statistics 

Table 1 provides summary statistics for the bankruptcy rate within the years tested. 

During 1983 and 2001, the fluctuation between the worst and the best economic years is 

noticeable: 1996 seem to be an expansion period which indicates the lowest annual bankrupt 

rate of 0.95%. Contrary, during 2000 that the economic conditions were heading towards 

recession, the bankrupt rate (3.05%) is the highest for the 18 year-period.  

 

Table 2 about here 

 

Table 2 reports correlation coefficients for the default variables 2d− and the volatility 

estimations ][DLCTVσ and ][BSVσ . Based on the first hypothesis, if our new volatility approach 

provides similar information as previous models (e.g. KMV, BS), DLCT and BS models 

should be highly correlated. In line with our expectations, the two standard deviations have a 

correlation of 0.509***, whereas the DLCT and BS default variables ( , 

respectively) are correlated by at least 0.724***.  

BSDLCT dd 2,2 −−

The correlations change depending on: First, whether we compare DLCT and BS 

variables based on the BSM-models )2( d−  and use time-to-maturity T=1  or 

T=wa . Second, whether we compare DLCT and BS variables based on the extended 

variables for intermediate default 

)2( 1Td−

)2( Twad−

)2( ′′−d  again using )2( 1Td ′′− or )2( Twad ′′− . According to the 

table, DLCT and BS variables using our extended variable and T=1 indicate the highest 
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correlation of 0.834*** )2,2( 11
BS

T
DLCT

T dd ′′−′′− . The high correlations suggest the default variables 

using our ][DLCTVσ  or ][BSVσ  capture simi

als regardin

latility estimat

eans and medians of all d

lar information.  

 

Table 3 about here 

g the accuracy of our methodology. It presents 

descr

ega  v

efault proxies are significantly higher (at 1%) for 

the b

ls and AIC information criterion 

s. Panel A refers to the 

DLCT

 

Table 3 provides sign

rdless the

e m

4.2. Cox proportional hazard mode

iptive statistics of the DLCT and BS default variables, for the healthy and bankrupt 

firms )2,2,2,2( 2/12/1 TTwaTTwa dddd ′′′′−− . Panel A refers to the DLCT measures and panel B to 

BS. R ion method, the default variable (the firm distance-to-

default to file for bankruptcy at T years) is expected to be higher for bankrupt rather than 

healthy firms.  

Indeed, th

o

ankrupt firms compared to the corresponding variables of healthy firms. DLCT and BS 

measure differences between healthy and bankrupt firms are still significant when T=wa (not 

only with T=1) and allow for intermediate default using the extended variable via our CFC 

ratio )2( ′′−d . These are in line with the expectations for our three hypotheses that our 

alternatives provide similar information as previous measures.  

 

Table 4 documents the coefficients of the Cox hazard model

 models. The annual rate and the default variable are positive and significant at the 1% 

level, in all models. This is consistent with our expectations as the bankrupt 

variables 2d− and the annual bankrupt rates should be positively related to the bankrupt 

probability. Models 3-4 that triggers intermediate default via our CFC ratio report the lowesr 
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-2LL. This implies better goodness of fit test, especially for the 3rd model. Also, comparing 

models 1 with 2, and 3 with 4, when T=wa, models have lower -2LL.  

AIC criterion ranks competing models with the one having the lowest AIC being the 

best. Model 3 which incorporates both, T=wa and accounts for intermediate default 

seems to provide the most sufficient statistic of the DLCT models. DLCT3 model appears to 

be superior among the DLCT models, followed by the DLCT4, DLCT2 and DLCT1. Hence, 

models that trigger for intermediate default indicate higher goodness of fit.  

)2( 2/Twad ′′−

Panel B documents the BS models, which indicate similar results in the sense that 

models containing our CFC to capture the probability for intermediate default indicate lower 

-2LL. The AIC information criterion suggest that when T=wa, BS models perform less well 

than when T=1. The BS4 model documents the highest goodness of fit among the BS models, 

followed by the BS3, , BS2 and BS1. Overall, all models (DLCT and BS) indicate significant 

sufficient statistic, consistent with our hypotheses. 

Ranking the models according to the AIC information criterion, when we extend the 

BSM-model to European compound call option and allow for intermediate default, it exhibits 

the highest statistic information in comparison with models that do not trigger intermediate 

involuntary default. Whether the time-to-debt-maturity has higher impact on the forecasting 

model, we find some supportive evidence. T=wa seems to have higher impact in the default 

probability information only in DLCT models and when CFC is included into the model.  

 

Table 4 about here 

4.3. ROC curve predictive ability 

According to the ROC curve analysis, a rough guide for classifying the accuracy of a 

diagnostic test is the traditional academic point system: 0.90-1= excellent, 0.80-0.90 = good, 

0.70-0.80 = fair, 0.60-0.70 = poor, 0.50-0.60 = fail. Based on the area coved by the ROC 
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curve, models 1, 3 and 4 indicate “fair” performance (0.77***) whereas model 2 appear to 

have “good” performance (0.809***). Therefore, the DLCT models indicate ability to 

predictive bankruptcy, with the 2nd model being the best.  

Regarding the BS models, models 2,3,4 indicate “fair” predictive ability (0.72***-

0.75***) but model 1 indicates “good” ability (0.689***). This predictive ability is worse 

than DLCT models, consistent with our first hypothesis. Our volatility 

approach )( ][DLCTvσ provides incremental information and is better suited for bankruptcy 

prediction compared to the BS approach )( ][BSvσ . BS report that by applying their methodology 

to KMV-Merton model result to a much simpler and easier to implement model, with no less 

sufficient statistic. Our methodology appears to incorporate more information than BS and the 

KMV-Merton model. As our methodology marginally outperforms BS, our model marginally 

outperforms KMV-Merton model as well. 

Comparing all models (DLCT and BS), they can be ranked from the highest to worse 

forecasting ability as: DLCT2, DLCT3, DLCT4, DLCT1, BS2, BS4, BS1, BS3. Although all 

models have significant predictive ability with the DLCT to outperform BS, the model 

ranking cannot clearly suggest whether our extended formula to count for intermediate 

default has higher predictive ability than the original BSM-model. The models that extend the 

BSM-model to European compound call option and trigger intermediate default via our CFC 

coverage ratio  do not necessarily exhibit more sufficient statistic compare to the 

corresponding boundary default of KMV-Merton approach

)2( ′′−d

)2( d− . The same holds when 

comparing the models the impact of the time-to-maturity estimation method (T=1 vs. T=wa). 

 

Table 5 about here 

4.4. Out-of-sample forecasts 
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To robust our results regarding the model rankings, we assess the out-of-sample forecast 

ability of all models, presented in table 5. With this approach we have the ability to rank 

firms into probability deciles without estimating the actual probabilities of bankruptcy. The 

top probability deciles should predict the highest percentage of bankruptcies. If models have 

misspecifications, out of sample results are not affected. Panel A demonstrates the out-of-

sample results for DLCT models, whereas panel B demonstrates the out-of-sample results for 

BS models.  

Out of sample assessments are similar to our previous findings. All models seem able to 

forecast the bankruptcy percentages by at least 35% at the top quintile. Specifically, they 

could be ranked from the highest to worse forecasting ability as: DLCT3, DLCT2, DLCT4, BS4, 

BS3, DLCT1, BS2, BS1. 

DLCT3 that employs our extended formula to capture for the intermediate default seems 

able to classify most of the bankrupt firms in the top deciles. In the highest probability 

deciles, it forecasts 56.08% of the bankrupt firms at the beginning of the period in which they 

default. DLCT2 predicts 55.7%, followed by DLCT4 that predicts 52.97% and by BS4 that 

appears able to forecast 52.39% of the bankruptcies in their top deciles. The rest models 

indicate lower predictive ability with the BS1 being the worse as it predicts only 35.09% of the 

bankrupt firms in its top deciles. Consistent with our previous findings, BS models indicate 

lower predictive ability. 

 

5. Conclusions 

Our main research objective is to provide a more effective and easier to practice 

bankruptcy prediction model which builds upon the option pricing theory. Like BS, we do not 

solve the simultaneous nonlinear equations required by the Black-Sholes-Merton model. We 

estimate volatility in a simpler manner. Our first hypothesis examines whether our volatility 
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calculation captures sufficient information. Such findings would be consistent with the BS 

argument that following the algorithms required by the BSM-model to estimate the option 

volatility is not significant. 

Second, we extend the theoretical BSM-model into a conceptual European compound 

call option, counting for the probability of an intermediate default. That is the case of a firm 

to have insufficient cash flows to meet any of its intermediate scheduled obligations before 

debt maturity. We account for this possibility by including a liquidity coverage ratio, 

examining whether the extended option provides sufficient statistic to predict bankruptcy. 

Finally, our third hypothesis examines whether the estimation method of the time-to-maturity 

option variable affects the default probability. Previous studies use time-to-maturity equal to 

one (Hilligeist et al., 2002; KMV-Merton; BS), whereas the debt maturity is beyond far from 

one. Following Charitou and Trigeorgis (2006), we also use a weighted average life of total 

liabilities as time to option maturity.  

Our results are in line with our expectations. After comparing our methodology and 

results with the previous models, our extended formula appears to be a valuable tool in 

forecasting default. It is more realistic and easy to implement, whilst it provides sufficient 

statistic and significant predictive ability. 

Consistent with the BS, the volatility estimation following the algorithms of the BSM-

model is not significant to the distance to default measurement. BS also report that by 

applying their methodology to KMV-Merton model result to a model with no less sufficient 

statistic. Our measures using a new approach for the volatility estimation appears to 

outperform BS, consistent with our first hypothesis. Hence, our methodology should exhibit 

higher statistic information than the one provided by the KMV-Merton model. 

As far as our second hypothesis and third hypotheses are concerned, the measures still 

indicate significant ability to forecast default. Nonetheless, the model ranking cannot clearly 
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suggest whether our extended formula to count for intermediate default has higher predictive 

ability than the original BSM-model. The same holds when comparing the models the impact 

of the time-to-maturity estimation method (T=1 vs. T=wa). These ambiguities are likely to be 

related to the fact that the default boundary used to estimate the default measures (total 

liabilities or cash flow coverage) has specific time-to-maturity which differs from the option 

forecasting horizon (T=1 or T=wa). This inconsistency however, is one of the limitations of 

the BSM-model.  

Overall, our alternative measures, our deviated simple volatility estimation, provide 

sufficient statistic and ability to forecast default that appears to outperforms prior models. 
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Table 1: Summary statistics – bankruptcies by year 

The table provides summary statistic of our sample. Annual bankruptcy rate is the number of the corporate 
bankruptcies divided by the total number of the traded firms over the previous year. Observations for a firm 
after it has file for bankruptcy are eliminated. The bankrupt rate represents the overall health of the economy. 
During recession periods the annual bankrupt rate is relatively, whereas it is relatively low rates during 
expansion periods.  
 

Year Bankruptcies Traded Co An.Rate An.R%
1983 6 1772 0.0034 0.34%
1984 13 1906 0.0068 0.68%
1985 27 2030 0.0133 1.33%
1986 22 2250 0.0098 0.98%
1987 21 2436 0.0086 0.86%
1988 41 2510 0.0163 1.63%
1989 67 2580 0.0260 2.60%
1990 73 2672 0.0273 2.73%
1991 72 2834 0.0254 2.54%
1992 59 3056 0.0193 1.93%
1993 38 3376 0.0113 1.13%
1994 47 3696 0.0127 1.27%
1995 53 4454 0.0119 1.19%
1996 48 5070 0.0095 0.95%
1997 67 5496 0.0122 1.22%
1998 103 5949 0.0173 1.73%
1999 116 6416 0.0181 1.81%
2000 208 6815 0.0305 3.05%
2001 166 6863 0.0242 2.42%  
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Table 2: Correlation Matrix for the default variables 
2d−The table presents the correlation coefficients between the default variables and correlations between the volatility Vσ estimated based on our approach ][DLCTVσ  and 

based on Bharath and Shamway (2008) ][BSVσ . The default variables 2d− are assessed based the description of BSM-model 6 but adjusted for dividend payments 

and based the description of our extended option formula via our liquidity proxy. The default variables assessed using ]2 ′′− d [DLCTVσ are notated as DLCTd2−  or DLCTd2′′− , 

whereas those estimated following the Bharath and Shamway (2008) as  or . The index  denotes that time to maturity is set equal to the weighted average 

duration life of debt (equation 21), whereas e default probability in a year. The time to maturity and vided by 2 when we allow for one intermediate 
default before debt maturity . Thus, we implicitly assume the default time will be about half of the T.  

BS2d− BSd2 ′′− Twa

T
1T tests th wa 1T are di

)2( ′′−d

 
1
.

0.724 1
(0.000)*** .

0.052 0.037 1
(0.000)*** (0.000)*** .

0.047 0.028 0.760 1
(0.000)*** (0.000)*** (0.000)*** .

0.012 0.013 0.019 0.002 1
(0.138) (0.102) (0.019)** (0.795) .

0.018 0.017 0.011 0.000 0.819 1
(0.027)** (0.032)** (0.159) (0.967) (0.000)*** .

0.040 0.037 0.034 0.031 0.022 0.020 1
(0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.007)*** (0.014)** .

0.040 0.036 0.035 0.029 0.022 0.025 0.832 1
(0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.007)*** (0.002)*** (0.000)*** .

0.055 0.052 0.033 0.027 0.019 0.018 0.032 0.026 1
(0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.017)*** (0.026)** (0.000)*** (0.001)*** .

0.034 0.037 0.009 0.012 0.006 0.014 0.008 0.003 0.509 1
(0.000)*** (0.000)*** (0.234) (0.102) (0.424) (0.074)* (0.311) (0.672) (0.000)*** .

DLCT
Twad 2−

BS
Twad 2−

DLCT
Td 12−

BS
Td 12−

][DLCTVσ

][BSVσ

DLCT
Twad 2− DLCT

Td 12− ][DLCTVσ ][BSVσBS
Twad 2− BS

Td 12− DLCT
Twad 2/2 ′′− BS

Twad 2/2 ′′− DLCT
Td 2/12 ′′− BS

Td 2/12 ′′−

DLCT
Td 2/12 ′′−

BS
Td 2/12 ′′−

DLCT
Twad 2/2 ′′−

BS
Twad 2/2 ′′−

 
  *, **, *** indicate the level of significance at 10%, 5% and 1%, respectively 
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Table 3: Descriptive Statistics of default measures 
The table presents descriptive statistics for the bankruptcy variables. The default variables are assessed based the 
description of BSM-model adjusted for dividend payments and

2d−
2 ′′− d based the description of our extended option formula 

via the liquidity proxy to allow for intermediate default before debt maturity. The default variables assessed using our 
volatility

][DLCTVσ are notated as DLCTd2−  or DLCTd2′′− , whereas those estimated following the Bharath and Shamway (2008) 

as  or . The index Twa  denotes that time to maturity is set equal to the weighted average duration life of debt, 

whereas tests the default probability in a year. When we allow for one intermediate default before debt maturity

BSd2− BS′′d2−

1T )2( ′′−d , 
we implicitly assume the default time will be about half of the T and divide by 2. Paired t-test and Wilcoxon test are tests 
of significance for mean and median differences between healthy and bankrupt firms; p-values in parenthesis.  

Mean paired t-test Median paired non-par
Difference p-value  Difference p-value

1 Healthy 19119 -1.75761 -1.2714
Bankrupt t=0 594 0.18687 -1.944 (0.000)*** 0.32302 -1.594 (0.000)***

Healthy 19119 -1.75761 -1.2714
Bankrupt t<0 2452 -0.91733 -0.840 (0.000)*** -0.5821 -0.689 (0.000)***

2 Healthy 24026 -4.113 -3.2021
Bankrupt t=0 675 -0.68665 -3.426 (0.000)*** -0.2369 -2.965 (0.000)***

Healthy 24026 -4.113 -3.2021
Bankrupt t<0 2738 -2.58205 -1.531 (0.000)*** -1.9611 -1.241 (0.000)***

3 Healthy 17475 -3.13358 -2.5425
Bankrupt t=0 362 1.63343 -4.767 (0.000)*** 0.8096 -3.352 (0.000)***

Healthy 17475 -3.13358 -2.5425
Bankrupt t<0 1736 -0.90964 -2.224 (0.000)*** -0.8026 -1.740 (0.000)***

4 Healthy 19614 -7.51246 -6.1258
Bankrupt t=0 404 1.28272 -8.795 (0.000)*** 0.24457 -6.370 (0.000)***

Healthy 19614 -7.51246 -6.1258
Bankrupt t<0 1856 -3.06977 -4.443 (0.000)*** -2.8395 -3.286 (0.000)***

Panel B:Descriptive statistics for BS default variables
1 Healthy 19518 -0.77926 -0.7173

Bankrupt t=0 587 0.13391 -0.913 (0.000)*** 0.27655 -0.994 (0.000)***

Healthy 19518 -0.77926 -0.7173
Bankrupt t<0 2444 -0.702 -0.077 (0.181) -0.364 -0.353 (0.000)***

2 Healthy 24613 -3.49092 -2.3403
Bankrupt t=0 668 -0.55464 -2.936 (0.000)*** -0.2777 -2.063 (0.000)***

Healthy 24613 -3.49092 -2.3403
Bankrupt t<0 2728 -2.14663 -1.344 (0.000)*** -1.5785 -0.762 (0.000)***

3 Healthy 16449 -2.11856 -1.6971
Bankrupt t=0 355 1.32705 -3.446 (0.000)*** 0.7692 -2.466 (0.000)***

Healthy 16449 -2.11856 -1.6971
Bankrupt t<0 1728 -0.67559 -1.443 (0.000)*** -0.6065 -1.091 (0.000)***

4 Healthy 18433 -6.54178 -4.4555
Bankrupt t=0 397 0.75821 -7.300 (0.000)*** 0.2356 -4.691 (0.000)***

Healthy 18433 -6.54178 -4.4555
Bankrupt t<0 1845 -2.55677 -3.985 (0.000)*** -2.4321 -2.023 (0.000)***

Panel A: Descriptive statistics for our default varialbes 

Model Firms N Mean Median

DLCT
Twad 2−

BS
Twad 2−

BS
Td 12−

DLCT
Td 12−

BS
Twad 2/2 ′′−

DLCT
Td 2/12 ′′−

BS
Td 2/12 ′′−

DLCT
Twad 2/2 ′′−

  *, **, *** indicate the level of significance at 10%, 5% and 1%, respectively. 
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Table 4: Cox proportional hazard models with DLCT and BS default measures 
The table presents coefficients of the hazard models with depended the time-to-default. It documents the hazard rates of the annual rate as described in table 1 and the 
default probabilities: 2d− are assessed based the description of BSM-model but adjusted for dividend payments, whereas 2 ′′− d are based on the description of our 
extended option formula via our liquidity proxy which allows for intermediate default. The default variables use the ][DLCTVσ  are notated as DLCTd2−  or DLCTd2′′− , whereas 

those use the ][BSVσ are notated as  or . The index  denotes that time to maturity is set equal to the weighted average duration life of debt, whereas tests 
the default probability in a year. The time to maturity is divided by 2 when we allow for one intermediate default before debt maturity

BSd2− BSd2′′− Twa 1T

)2( ′′−d . Thus, we implicitly assume 
the default time will be about half of the T. Each model includes a binary variable that takes 1 for bankrupt firms at the bankrupt year and zero when firms are included in 
the healthy sample. AIC test constitutes test for goodness of model fit among several competitive models. ROC curve ratio indicates the area covered by the model’s 
average function divided by that of a “perfect” model. ROC curve ratio equal to 1 indicates a model with “perfect” predictive ability. 
 

Panel A: DLCT models

1 86.613 0.316 3046 9119.065 0.250 0.769
(0.000)*** (0.000)*** (0.000)*** (0.000)***

2 64.288 0.434 3413 10423.858 0.233 0.809
(0.019)** (0.000)*** (0.000)*** (0.000)***

3 102.415 0.072 2098 5285.930 0.171 0.772
(0.000)*** (0.000)*** (0.000)*** (0.000)***

4 100.914 0.033 2260 5984.512 0.173 0.761
(0.000)*** (0.000)*** (0.000)*** (0.000)***

Panel B: BS models

1 91.152 0.300 3031 9034.651 0.254 0.686
(0.000)*** (0.000)*** (0.000)*** (0.000)***

2 67.572 0.511 3396 10305.715 0.233 0.746
(0.001)*** (0.000)*** (0.000)*** (0.000)***

3 103.824 0.066 2083 5185.686 0.193 0.716
(0.000)*** (0.000)*** (0.000)*** (0.000)***

4 103.236 0.030 2242 5880.330 0.186 0.722
(0.000)*** (0.000)*** (0.000)*** (0.000)***

Cox partial    
-2LL

Cox partial    
-2LL

ROC curve 
ratio

ROC curve 
ratioAIC

AIC

An.RateModel

An.Rate Obs

Obs

Model DLCT
Twad 2− DLCT

Td 12−

BS
Twad 2− BS

Td 12−

DLCT
Td 2/12 ′′−

BS
Td 2/12 ′′−

DLCT
Twad 2/2 ′′−

BS
Twad 2/2 ′′−

 
          *, **, *** indicate the level of significance at 10%, 5% and 1%, respectively. 

31 



 

Table 6: Out of sample forecasts 
The table reports the out of sample forecasting ability of the hazard models. Panel A examines the accuracy of our DLCT models, whereas panel B examines the accuracy 
of BS models (panels A and B of table 4, respectively). DLCT and BS bankruptcy variables differ only in volatility estimation: DLCT include the volatility ][DLCTVσ , whilst 

BS but includes the ][BSVσ . For the out of sample estimations, firms are sorted into deciles on each forecasting model. The resulting coefficients of each hazard model are 
used to estimate the predicted time-to-default. The frequency column indicates the bankruptcies occurred within the specific probability deciles whereas the forecast column 
indicates the percentage of default within the same deciles. The top probability quintiles should predict the highest percentage of bankruptcies.  With this approach we are 
able to rank firms into probability deciles without estimating the actual default probabilities, therefore, if the models have misspecifications, out of sample results are not 
affected. To calculate the actual default probabilities, we divide the default frequency by the model observations (Default Prob. Column). 
 

Model:

Deciles Frequen. Forecast Default.Prob. Frequen. Forecast Default.Prob. Frequen. Forecast Default.Prob. Frequen. Forecast Default.Prob.

Panel A: DLCT models
1-2 261 43.94% 8.57% 376 55.70% 11.02% 203 56.08% 9.68% 214 52.97% 10.39%
3-4 181 30.47% 5.94% 214 31.70% 6.27% 58 16.02% 2.76% 69 17.08% 3.35%
5-6 105 17.68% 3.45% 65 9.63% 1.90% 53 14.64% 2.53% 62 15.35% 3.01%
7-8 42 7.07% 1.38% 14 2.07% 0.41% 37 10.22% 1.76% 40 9.90% 1.94%

9-10 5 0.84% 0.16% 6 0.89% 0.18% 11 3.04% 0.52% 19 4.70% 0.92%
Defaults: 594 675 362 404

Panel B: BS models
1-2 206 35.09% 6.80% 293 43.86% 8.63% 173 48.73% 8.31% 208 52.39% 9.28%
3-4 191 32.54% 6.30% 239 35.78% 7.04% 70 19.72% 3.36% 82 20.65% 3.66%
5-6 110 20.10% 3.63% 110 16.47% 3.24% 55 15.49% 2.64% 56 14.11% 2.50%
7-8 23 11.58% 0.76% 23 3.44% 0.68% 42 11.83% 2.02% 40 10.08% 1.78%

9-10 3 0.68% 0.10% 3 0.45% 0.09% 15 4.23% 0.72% 11 2.77% 0.49%
Defaults: 587 668 355 397
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