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Abstract 

In this paper, we assess the accuracy of linear and nonlinear models in predicting daily crude oil 

prices. Competing forecasts of crude oil prices are generated from parsimonious linear models 

which require no parameter estimation, as well as linear and nonlinear models. Two of the linear 

models that we employ exploit the informational content of oil demand and the increasing 

correlation between oil and equity prices and are novel to the literature. The nonlinear model that 

we consider is an artificial neural network. More specifically, we consider a bagged neural 

network, a neural network trained using the genetic algorithm as well as a neural network with 

fuzzy logic. We find that some of the linear models outperform the random walk in terms of out-

of-sample statistical forecast accuracy. Our findings also suggest that while the buy-and-hold 

strategy dominates some of the models in terms of dollar payoffs and risk-adjusted returns under 

a long-only strategy, all the models that we consider generate higher dollar payoffs than the buy-

and-hold strategy under the short-only strategy. An investor obtains the largest profits by trading 

based on the moving average convergence divergence which is a technical indicator.  
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1. Introduction 

Fluctuations in the nominal price of crude oil are known to affect the level of economic activity 

and consumer sentiment (Hamilton, 2009). The information contained in the term structure of 

crude oil futures markets has also been recently shown to predict inflation (Gospodinov, 2016) 

and to affect inflation expectations and breakeven inflation (Chen, 2009; Gospodinov and Wei, 

2016). Research on the relation between fluctuations in the price of oil and economic activity 

resulted in a sizeable number of influential studies which document the adverse effects of oil price 

shocks on the level of economic activity (Hamilton, 1983, 1985, 2009, 2013; Hamilton and 

Herrera, 2004; Kilian, 2014). A parallel strand of the literature thoroughly investigates 

nonlinearities in the relationship between changes in crude oil prices and economic growth 

(Hamilton, 2003; 2011; Kilian and Vigfusson, 2011a, 2011b; 2013).3  

Despite the paramount importance of the fluctuations in the price of oil on economic activity, 

predicting the price of oil continues to be a daunting task. This is unfortunate given that accurate 

forecasts of the price of oil are of central policy-making, trading and practical importance. From 

a policy-making perspective, accurate forecasts of the price of oil are helpful to central banks in 

designing policies that limit their impact on economic activity or mitigate their “pass-through” to 

inflation. In fact, under an inflation targeting monetary policy framework, central banks closely 

monitor the price of oil and seek to determine the effects of oil price fluctuations on their inflation 

target. The macroeconomic and policy-making importance of accurate oil price forecasts are 

clearly articulated in Alquist, Kilian and Vigfusson (2013): “central banks and private sector 

forecasters view the price of oil as one of the key variables in generating macroeconomic 

projections and in assessing macroeconomic risks”. 

From a trading and practical perspective, and given the existence of a highly liquid market for 

crude oil futures, accurate forecasts of the price of oil can be used by investors to implement 

trading strategies that potentially yield large (risk-adjusted) returns. The practical and policy-

making importance of out-of-sample forecasts of oil prices has led to renewed interest in devising 

models which produce superior out-of-sample predictive accuracy.  

While several models with good predictive power emerge from existing studies, this sizeable 

literature continues to highlight the inherent challenges in predicting the price of oil. The 

                                                           
3 Yet another line of studies examines the relationship between the prices of shale oil or refined oil products and the 

price of crude oil (Kilian, 2010; 2016 among others). 
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resurgence of interest in predicting the price of oil was, at least in part, instigated by the influential 

study of Alquist, Kilian and Vigfusson (2013) which shows that the U.S. Energy Information 

Administration’s forecasts of crude oil prices do not outperform a simple naïve forecast. However, 

subsequent work proposes several methods for generating forecasts which outperform the naïve 

(no change) forecast.  Baumeister, Kilian and Zhou (2016) show that some refined oil product 

spreads are useful in predicting the price of oil at horizons up to two years. Baumeister and Kilian 

(2012) show that a recursive vector autoregressive models with global activity and oil market 

variables succeed in producing real-time forecasts of the real price of oil which outperform, in 

terms of directional accuracy, other time series forecasts as well as the no change forecast. In a 

similar vein, Baumeister and Kilian (2015) provide evidence that real-time forecasts of the price 

of oil which exploit information in the oil and refined oil markets or effectively combine various 

forecasts outperform the no-change forecast. Using mixed-data-frequency methods, Baumeister, 

Guérin and Kilian (2015) investigate the usefulness of incorporating high-frequency financial 

asset prices in predicting the price of oil. The authors find that their preferred mixed frequency 

model significantly improves the statistical accuracy of oil price forecasts vis-à-vis the no-change 

forecast.  

In this paper, we assess the accuracy of linear and nonlinear models in predicting daily crude 

oil prices. Competing forecasts of crude oil prices are generated from parsimonious linear models 

that require no parameter estimation, an autoregressive moving average model, an autoregressive 

distributed lag model of crude oil prices and the Baltic dry Index, an error correction model of 

crude oil spot and futures prices, a demand model and artificial neural networks. While some of 

the latter models have already been used in the existing literature, we propose two models that are 

novel to the literature. The first is an adaptation of the demand model employed by academics and 

policy-makers (Hamilton, 2015; Bernanke, 2016) to understand the drivers of the recent decline 

in oil prices. The basic premise of the demand model is to employ the informational content of 

copper prices as a proxy of global economic activity (or oil demand). In view of the increasing 

correlation between oil and equity prices as well as the predictive power of exchange rates for 

commodity prices (Chen, Rogoff and Rossi, 2010), we also introduce a new model, referred to as 

the financialization model, which exploits the information content of equity prices and exchange 

rates. We adapt the autoregressive distributed lag model to predicting crude oil prices by 

incorporating changes in the Baltic dry index as an exogenous model. The latter model exploits 
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the predictive content of the Baltic dry index which is widely viewed as a proxy of global 

economic activity. The nonlinear model that we consider is an artificial neural network. More 

specifically, we thoroughly examine the predictive accuracy of ANNs by generating forecasts 

from a two-layer feedforward network using three approaches. The first involves using bootstrap 

aggregation (or bagging) with the backpropagation algorithm. The second consists of training the 

network using the genetic algorithm while the third involves using fuzzy logic with bagging to 

generate forecasts. 

As noted before, we predict daily crude oil prices. The use of daily data carries both advantages 

and disadvantages. On the one hand, using daily data ensures more accurate size and higher power 

for the statistical tests that we conduct (Alquist, Kilian, Vigfusson, 2013). On the other hand, daily 

prices (or price changes) are more volatile and are noisier than monthly prices. As a result, they 

are more difficult to predict. The trading importance of oil price forecasts motivates, to a large 

extent, our decision to employ daily data.  

Our paper contributes to the literature on predicting the price of oil along several lines. To the 

best of our knowledge, this is the first paper to provide daily forecasts of the price of oil. In 

addition, we introduce and assess the predictive ability of two novel models: the demand and 

financialization models. In order to assess the economic significance of our results, we examine 

the (risk-adjusted) profitability of trading based on the directional forecast of the price of oil from 

the competing models. The profitability of trading based on the various model forecasts is 

compared to that of the Moving Average Convergence Divergence (MACD), a technical indicator, 

and the buy-and-hold strategies.  

We find that some of the linear models outperform the random walk in terms of out-of-sample 

statistical forecast accuracy. Our findings also suggest that while the buy-and-hold strategy 

dominates some of the models in terms of dollar payoffs and risk-adjusted returns under a long-

only strategy, all the models that we consider generate higher dollar payoffs than the buy-and-hold 

strategy under the short-only strategy. An investor obtains the largest profits by trading based on 

the MACD. 

The outline of the paper is as follows. Section 2 begins with a discussion of the data and 

variables which we employ. Section 3 proceeds to introducing our forecasting models while 

Section 4 discusses the statistical forecast evaluation criteria we employ. In Section 5, we examine 

the economic significance of our forecasting results. Section 6 offers concluding remarks.    
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2. Data and Variables 

 

2.1. Crude Oil Market and Futures 

 

Crude oil is the world’s most actively traded commodity. In fact, crude oil is an important input to 

production and several refined products, such as gasoline and diesel fuel can be obtained it. While 

derivative instruments on different types of oil are traded worldwide, crude oil futures, which trade 

on the New York Mercantile Exchange (NYMEX) of the Chicago Mercantile Exchange (CME), 

are the most widely used and liquid commodity futures contracts (Burghardt, 2008). Crude oil 

futures are settled based on the price of the West Texas Intermediate (WTI) oil delivered to 

Cushing, Oklahoma. 

Crude oil futures are cash settled (i.e. marked to market daily).4 The expiration cycle of the oil 

futures contract is monthly. That is, contracts expiring every month of the year, from January to 

December, are listed on the CME. Consecutive month contracts are listed for the current year as 

well as the next five years. The CME lists only the June and December contracts beyond the fifth 

year.5 Crude oil futures trade virtually round the clock via the CME’s electronic platform for six 

days of the week.6 However, we employ in our empirical analysis data only from the regular 

trading hours. More specifically, we conduct the empirical analysis using the settlement price on 

the trading days.  

In our empirical analysis, we forecast the changes in the price of the first (or nearest) futures 

contract. This choice is motivated by several considerations: First, the nearest futures contract is 

the most liquid one. Second, existing academic studies (Fama and French, 1987; 1988; 

Gospodinov and Ng, 2013) employ the price of the nearest futures contract in lieu of cash prices. 

In fact, Fama and French (1987, 1988) opt to rely on futures prices due to the lack of acurate spot 

price data. Third, Alquist, Kilian and Vigfusson (2013) note that central banks and international 

organizations routinely use the nearest oil futures price as a proxy for the spot price of oil.7 Our 

use of futures contracts also stems from important trading considerations: Opening and 

maintaining a futures position involves lower transaction costs and is simpler to implement than 

transacting in the cash/spot market.   

                                                           
4 The contract size is 1000 barrels and the minimum tick is $0.01.  
5 http://www.cmegroup.com/trading/energy/crude-oil/light-sweet-crude_contract_specifications.html?optid=425 
6 http://www.cmegroup.com/trading/why-futures/welcome-to-nymex-wti-light-sweet-crude-oil-futures.html 
7  Our forecasting results (available from the authors) are robust to using the cash price instead of the nearest futures 

price. 
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Crude oil futures price data are obtained from Datastream. Following the literature 

(Bessembinder, 1992; de Roon, Nijman and Veld, 2000; Gorton and Rouwenhorst, 2006), we 

employ a roll-over strategy to construct a continuous futures price series. The strategy consists of 

rolling over from the nearest to the next-to-nearest contract on the first day of the expiration 

month.8 

 

2.2. Crude Oil Price Changes and Forecast Generation 

In order to forecast from the linear and non-linear models introduced below, we divide our sample 

into an in-sample estimation (or training) and out-of-sample forecasting (or test) periods. We 

delineate our sample as follows: Our in-sample estimation (or training period when dealing with 

non-linear models) runs from January 2, 1990 to January 1, 2010 while our out-of-sample forecast 

evaluation (or test) sample spans the period January 4, 2010 to July 21, 2017. Note that our out-

of-sample evaluation period is particularly challenging given that oil prices experienced booms 

and busts. For instance, a run-up in oil prices in 2007 was followed by a bust in 2008. Oil prices 

also exhibited another steep decline in 2014. We generate one-step-ahead forecasts from the 

competing models using a rolling (or sliding) window of 5217 trading days. 

Let St denote the settlement price of the nearest oil futures contract. We test the null of a unit 

root in the crude oil futures prices, St, using an Augmented Dickey Fuller (ADF) test.9 The ADF 

test results, provided in Panel A of Table 1, suggest that the null of a unit root cannot be rejected.10 

Let )ln( tt Ss  denote the logarithm of settlement price of the nearest crude oil futures contract.11 

The unit root test results, reported in Panel B of Table 1, also show that the null of a unit root in 

the log oil price cannot be rejected. Therefore, when using linear (econometric) models to forecast 

                                                           
8 That is, data from the expiration month are not used. This roll-over strategy allows us to avoid contract expiration 

effects (i.e. the high volatility near the contract expiration date as discussed in Bessembinder, Coughenour, Seguin 

and Monroe Smoller, 1996). Rolling over futures contracts also mimics traders’ actual behavior. In fact, traders avoid 

taking delivery of the underlying commodity by closing out an open position prior to the contract’s expiration (usually 

around the first notice day). 
9 We include an intercept and a trend in the ADF test equation. The number of lags is selected using the Bayesian 

Information Criterion (BIC).  
10 Given the lower power of ADF test against near-unit root alternatives, we also employ the the ADF with GLS 

detrending test of Elliott, Rothenberg and Stock (1996) which has excellent power properties as shown in the unit root 

literature. The results, reported in Panel A of Table 1, also suggest the presence of a unit root in crude oil prices. 
11 Again, we note that using cash (or spot) prices of crude oil does not materially affect our forecasting results. The 

results with the spot price of oil are available from the authors.  
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the price of oil, we avoid spurious results by predicting changes in the price of oil.12  Changes in 

the price of oil are given by: 

                                                             .1 ttt sss                                                              (1) 

Panel C of Table 1 provides the summary statistics of the crude oil price changes for the full sample 

as well as the in-sample and out-of-sample periods. Consistent with the stylized features of 

financial returns, the descriptive statistics show that the distribution of crude oil futures price 

changes is leptokurtic (i.e. exhibits excess kurtosis and fat tails) and exhibits some negative 

skewness. A Bera and Jarque (1981) test of normality (available from the authors) strongly rejects 

the null of normality in the crude oil returns. In contrast to the oil prices, the null of a unit root is 

strongly rejected for crude oil price changes. 

               [Insert Table 1 here]  

While some of our parsimonious linear models straightforwardly generate one-step-ahead 

forecasts of St , which we denote as ,ˆ
1tS we produce one-step-ahead forecasts of ts from our 

econometric models so as to avoid spurious regression results. The forecasts of ts , denoted  as 

1
ˆ
 ts , are accumulated to obtain forecasts of the logarithm of the price of oil. Forecasts of the price 

of oil, 1
ˆ
tS , are, in turn, obtained using exponential values as ).ˆexp(ˆ

11   tt sS  

 

2.3. Other Predictors of Crude Oil Prices 

 

The existing literature provides empirical evidence that several variables exhibit predictive power 

in forecasting crude oil prices or, more generally, commodity prices. The first predictor that we 

employ is the logarithmic change in the US dollar trade-weighted exchange rate. The use of this 

predictor is motivated by Chen, Rogoff and Rossi (2013)’s findings which suggest that exchange 

rates possess predictive power for commodity prices.  

Our second predictor are the changes in a broad index of spot commodity prices. Alquist, Kilian 

and Vigfusson (2013) use this variable to predict crude oil prices. We employ the Commodity 

Research Bureau (CRB)’s spot commodity price index as our gauge of spot commodity prices. 

The other predictors that we employ are: Changes in the logarithm of the settlement price of the 

nearest copper futures contract, the change in the yield on the ten year U.S. Treasury note as well 

                                                           
12 A forecast of the price of oil can be straightforwardly obtained by cumulating the forecasted changes in the price of 

oil. 
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as the Chicago Board Option Exchange (CBOE)’s option-implied volatility index, the VIX. 

Building on the observations of Hamilton (2015) and Bernanke (2016), we employ these latter 

variables as predictors in an oil demand model.  

Our last predictor are the three month logarithmic changes in the Baltic Dry Index (BDI). 

Computed and disseminated by the Baltic Dry Exchange since May 1985, the BDI measures the 

cost of shipping major raw materials by sea (Schinas, Grau and Johns, 2014). Bakshi, Panayotov 

and Skoulakis (2011) provide empirical evidence that changes in the BDI are a useful predictor of 

commodity and equity returns as well as global economic activity.13 Following Bakshi, Panayotov 

and Skoulakis (2011), we employ three-month logarithmic changes in the BDI as a predictor of 

crude oil price changes.14  

Daily data on the U.S. dollar trade-weighted exchange rate the ten year U.S. Treasury note yield 

are obtained from the Federal Reserve Economic Data (FRED ©) database of the St. Louis Federal 

Reserve Bank.15 Daily data on the CRB spot commodity price index, the VIX, the nearest copper 

futures settlement prices and the BDI are obtained from Datastream. Daily data on the VIX are 

available only starting January 2, 1990 thereby restricting the starting date of our sample.   

Table 2 provides the summary statistics and cross-correlations of our predictors for the full 

sample.  

     [Insert Table 2 here] 

Consistent with the observations of Bakshi, Panayotov and Skoulakis (2011), the descriptive 

statistics in Panel A of Table 2 show that changes in the BDI exhibit high volatility. While our 

predictors generally exhibit little first-order autocorrelation, the changes in the BDI are highly 

persistent. The cross-correlations, reported in Panel B of Table 2, indicate that pairwise 

correlations between our predictors are low.16 

 

3. Linear and Nonlinear Forecasting Models 

We discuss next the linear and nonlinear forecasting models that we employ to generate crude oil 

                                                           
13 The BDI and Kilian’s (2009) index of global real economic activity are constructed, as noted in Alquist, Kilian 

and Vigfusson (2013), using identical nominal data.  
14 Bakshi, Panayotov and Skoulakis (2011) note that three month changes in the BDI exhibit lower volatility than one 

period changes. Our own summary statistics corroborate this observation with daily data.  
15 The database can be found at: https://fred.stlouisfed.org/  
16 The highest correlation coefficient of 0.461 is between the changes in the CRB spot commodity prices and the 

changes in copper prices.  
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price forecasts. While some of these models have been previously employed in the oil forecasting 

literature, we introduce two novel models: The oil demand and financialization models. We also 

adapt the autoregressive distributed lag model to exploit the predictive content of the Baltic dry 

index.  

3.1. The Random Walk Model 

The first model we employ is a random walk (with no drift) model of crude oil prices. The random 

walk model is a widely used benchmark in the crude oil prediction literature (see, for example, 

Baumeister and Kilian, 2012, 2015; Alquist, Kilian and Vigfusson 2013). The model implies, in 

essence, a no-change forecast for the price of oil: 

                                                          ,ˆ
1 tt SS         (2)    

where 
1

ˆ
tS is the predicted oil futures price on day t+1. Consistent with the existing literature, we 

start by evaluating the predictive (and trading) performance of the random walk model. We 

henceforth refer to the random walk forecast as RANDOM WALK. 

 

3.2. Parsimonious Linear Forecasting Models  

Alquist, Kilian and Vigfusson (2013) propose several parsimonious models, which require no 

parameter estimation, for forecasting the price of oil. We next employ two of these models. The 

first model builds on Chen, Rogoff and Rossi (2010)’s empirical findings which suggest that 

exchange rates predict oil prices to propose the following parsimonious forecasting model: 

           )1(ˆ
1 ttt eSS  ,                    (3) 

where te is the logarithm of the trade-weighted U.S. dollar exchange rate. We assess the predictive 

accuracy of this simple parsimonious model. We refer to the forecasts from equation (3) as 

LINEAR 1. 

The second parsimonious model we employ exploits the informational content of aggregate 

commodity prices in terms of out-of-sample forecasting. This model is given by: 

           )1(ˆ
1

com

ttt pSS  ,         (4)  

where 
com

tp  is the natural logarithm of the level of the CRB commodity index.  
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The forecasts from equation (4) are referred to as LINEAR 2. Given that the models in equations 

(3) and (4) require no parameter estimation, they are not subject to estimation uncertainty.  

  

3.3. The Oil Demand and Financialization Models 

Several oil market observers and academics (Hamilton, 2015) have expressed the view that the 

recent decline in the price of oil is driven by weaker demand from emerging markets. The financial 

press, researchers, market observers and policy-makers17 have also pointed to an increase in the 

correlation between equity index levels and crude oil prices and argued that the increased 

correlation is a manifestation of a common demand factor driving both equity and commodity 

prices.18 In fact, the recent precipitous decline in oil prices has been attributed by the financial 

press to a weaker demand for oil by emerging markets. 

These latter arguments are consistent with recent evidence suggesting that the increasing 

financialization of commodity markets results in increasing correlations between commodity and 

equity prices (Gorton and Rouwenhorst, 2006; Tang and Xiong, 2012; Cheng and Xiong, 

2014).19,20 In light of the heightened correlation between the oil and equity markets, researchers 

have recently examined whether the inclusion of financial variables in oil forecasting models 

delivers improvements in forecast accuracy. In specific, Baumeister, Guérin and Kilian (2015) use 

a mixed-data-frequency approach to explore the usefulness of high-frequency asset prices in 

predicting the price of oil. The authors’ findings suggest that the predictive gains that can be 

achieved from using high-frequency financial data are modest. 

The first parsimonious model attempts to exploit the increasing correlation between oil and 

equity prices (Tang and Xiong, 2012) as well as metals prices role as leading indicators of global 

                                                           
17 Former Federal Reserve Board chairman Ben Bernanke examines the correlation between crude oil prices and S&P 

500 levels (Bernanke, 2016).  
18 Evidence of a common factor in commodity and equity markets, however, continues to be elusive in the asset pricing 

literature. See, for example, Skiadopoulos (2013). 
19 The role of speculation in driving commodity prices is also a hotly debated topic in the literature. While some  

researchers argue that the participation of commodity trading advisors and hedge funds in commodity markets might 

result in an increase in the correlation between commodity and equity prices (Buyuksahin and Robe, 2011; Singleton, 

2013), the predominant view appears to be that fluctuations in commodity prices cannot be straightforwardly attributed 

to speculation or hedge fund participation, See, for example, Stoll and Whaley (2010), Fattouh, Kilian and Mahadeva 

(2013) and Irwin and Sanders (2012). 
20 Several articles in the financial press refer to the increased correlation between oil and equity prices and tie the 

heightened correlation to weaker demand for oil from emerging economies. See, for example, 

http://www.wsj.com/articles/oil-stocks-dance-the-bear-market-tango-1453722783 
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economic activity (Caldara, Cavallo and Iacovello, 2016; Pindyck and Rotemberg, 1990; Labys, 

Achouch and Terraza, 1999): 

                                            ,ˆ
1211   t

MSCI

t

c

tt erbsbas                      (5) 

where MSCI

tr  are the continuously compounded returns on the emerging markets MSCI index and

c

ts  is the logarithm of the settlement price of the nearest copper futures contract. As stated earlier, 

the price of copper serves as a proxy for global economic health.  The forecasts from equation (5) 

are referred to as FINANCIALIZATION.                

We also adapt the oil demand model of Hamilton (2015) and Bernanke (2016) to forecasting the 

price of oil. The model is given by: 

                                  14

10

3211
ˆ

  tttt

c

tt VIXress  ,                         (6) 

where 
c

ts  is the logarithm of the settlement price of the nearest copper futures contract, te  is the 

logarithm of the trade-weighted US dollar exchange rate, 
10

tr is the yield on the ten year U.S. 

Treasury note and tVIX is the CBOE option-implied volatility index for the S&P 500. In equation 

(6), the price of copper again serves as a proxy for demand conditions in the global economy. 

Changes in the exchange rate are included in view of evidence suggesting their usefulness in 

predicting commodity prices (Chen, Rogoff and Rossi, 2010). The VIX index is widely viewed as 

an investor fear gauge in equity markets (Whaley, 2000) and can be employed to extract the 

variance risk premium (Bekaert and Hoerova, 2014, Bollerslev, Tauchen and Zhou, 2009). Given 

the VIX’s importance as a measure of uncertainty and following Bernanke (2016), we include the 

changes in the VIX index as a predictor in the proposed demand model. The forecasts from the 

demand model in equation (5) are referred to hereafter as DEMAND.  

 

3.4. Autoregressive Moving Average (ARMA) Model 

Autoregressive moving average models (ARMA) are simple linear time series models that have 

been widely employed to predict crude oil price changes (Baumeister and Kilian, 2012), interest 

rates spreads/changes (Gospodinov and Jamali, 2011; Dbouk, Jamali and Kryzanowski, 2016) and 

other financial asset returns.  

An ARMA (p,q) relates the change in the price of crude oil at time t+1 to p of its own lags as 

well as to q lags of a white noise error term:   
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11211112101   qtqtttptpttt uuuussss          (7) 

where tu  is a white noise error term.  The optimal autoregressive (AR) and moving average (MA) 

lag lengths, p* and q*, are selected by searching over several possible combinations of p and q and 

selecting the model which minimizes the Akaike Information Criterion (AIC). The selected model 

is an ARMA (4,2) and we verify that the model’s residuals do not exhibit any remaining serial 

correlation. The forecasts generated from the ARMA model in equation (7) are henceforth referred 

to as ARMA. 

 

3.5. Error Correction Model (ECM) 

Spot and futures prices should exhibit, according to economic theory, a long-run cointegrating 

relationship. Existing research (Gospodinov and Jamali, 2011; Brooks, Rew and Ritson, 2001) 

exploits the existence of such a cointegrating relationship for predictive purposes. For instance, 

Coppola (2008) provides empirical evidence that the out-of-sample predictive accuracy of a vector 

error correction model of crude oil spot and futures prices is superior to that of a random walk.  

Based on these observations, we employ an ECM model of crude oil spot and futures prices to 

predict crude oil price changes. One advantage of the ECM is the model’s ability to exploit the 

informational content of futures prices in predicting the price of oil. A second advantage of the 

ECM model is its ability to capture and exploit, in terms of out-of-sample forecasting, the long-

run (or equilibrium) relationship between the spot and futures prices of crude oil. Again, we note 

that we proxy the spot price of oil using the nearest futures contract while we consider the futures 

price to be the next-to-nearest (or second) futures contract.  Let 
)1(

tf denote the logarithm of the 

next-to-nearest crude oil futures prices.  

We employ the Engle and Granger (1987) two-step approach to test for cointegration between 

ts and 
)1(

tf . In the first step, we estimate the cointegrating regression (i.e. cointegrating vector) 

using our in-sample observations: 

  ,)1(

10 ttt fs                                                   (8) 
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and test the residuals of the above regression, t̂ ,  for a unit root. Rejecting the null of a unit root 

in the residuals of the cointegrating regression in equation (8) implies that ts and 
)1(

tf  are 

cointegrated.21  

Our in-sample estimation results for equation (8) yield an estimate of the intercept, 0̂ , of 0.01 

and an estimate of the slope coefficient,  1̂ , of 0.99. Both coefficients are significant at the 1% 

level. The null of a unit root in the residuals, t̂ , is rejected (using the ADF and the ADF-GLS 

tests) at the 1% and 5% levels, respectively.  We view these results as suggestive of the presence 

of a cointegrating relationship between ts and 
)1(

tf  and, accordingly, proceed to estimate an ECM. 

As noted by Brooks, Rew and Ritson (2001), the Granger representation theorem implies that the 

variables can be modelled using an ECM. The ECM model is given by: 

             .......ˆˆ
1

)1(

1

)1(

11101   tqtqtptpttt vffsss               (9) 

In equation (9), the error correction term is )1(

10
ˆˆ

ttt fs    while the speed of adjustment 

parameter (to long-run equilibrium) is .̂ Optimal lag lengths, p* and q*, of eight are selected by 

ensuring that the ECM’s residuals do not exhibit any residual autocorrelation. The forecasts from 

the ECM model are henceforth referred to as ECM. 

 

3.6. Autoregressive Distributed Lag (ARDL) Model  

As discussed earlier, existing research provides empirical evidence that the changes in the BDI 

index are a useful predictor of crude oil prices. In fact, the BDI is closely scrutinized by the 

financial press and practitioners and the common view echoed in the financial press is that the 

index serves as a leading indicator of global economic and trade activity.22  

                                                           
21 In order to have a cointegrating relationship between ts and 

)1(

tf , both variables should be integrated of the same 

order (i.e. should contain a unit root or are integrated of order one). We test for a unit root in the logarithm of the 

settlement price of the second oil futures contract and our conclusions indicate that the null of a unit root cannot be 

rejected.  
22 See, for example, www.economist.com/blogs/economist-explains/2015/03/economist-explains-7, 

hwww.newyorker.com/business/currency/the-surprising-relevance-of-the-baltic-dry-index and 

www.bloomberg.com/news/articles/2016-01-05/baltic-dry-ship-index-tumbles-to-fresh-record-amid-china-turmoil.  

http://www.economist.com/blogs/economist-explains/2015/03/economist-explains-7
http://www.newyorker.com/business/currency/the-surprising-relevance-of-the-baltic-dry-index
http://www.bloomberg.com/news/articles/2016-01-05/baltic-dry-ship-index-tumbles-to-fresh-record-amid-china-turmoil
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We assess the predictive power of the BDI index in forecasting crude oil prices using an 

Autoregressive Distributed Lag (ARDL) model. Let tg denote the three month (logarithmic) 

change in the BDI. The ARDL (p,q) model is given by: 

         ,......ˆ
1111101   tqtqtptptt ggsss       (10) 

where the autoregressive lag order is p and the distributed lag order is q. The optimal lag lengths, 

p* and q*, are selected by searching over all possible combinations of lag orders up to twelve (i.e. 

up to p = 12 and q = 12) and selecting the model which minimizes the AIC. 

Our selection procedure yields an ARDL (8,1) and the selected model is employed for out-of-

sample forecasting. Forecasts from the ARDL model are referred to, henceforth, by ARDL. 

 

3.7. Artificial Neural Networks: Bagging, Genetic Algorithm and Fuzzy Logic 

The linear forecasting models introduced above do not allow for nonlinearities in oil price 

dynamics. Accounting for nonlinearities can possibly yield forecast improvements. In this section, 

Artificial Neural Networks (ANNs) are employed to capture nonlinearities in the price of crude oil 

and produce out-of-sample forecasts.23 Neural networks are popular for modeling and forecasting 

financial and macroeconomic times series because of their ability to approximate nonlinear 

dynamics of unknown form arbitrarily closely (Franses and van Dijk, 2000).24 More specifically, 

researchers have examined ANNs’ predictive ability in the foreign exchange (Yu, Wang and Lai, 

2010; Franses and van Griensven, 1998; Franses and van Homelen, 1998) equity (Refenes, 

Zaparanis and Francis, 1994; White, 1988), fixed income (Swanson and White, 1995) and 

commodity (Kohzadi et al., 1996) markets.25 Studies which explore the predictive ability of ANNs 

for macroeconomic variables include Maasoumi, Khotanzad and Abaye (1994), Swanson and 

White (1997) and Teräsvirta, van Dijk and Medeiros (2005). 

Following Zhang, Putawo and Hu (1998), an ANN can be written as:  

                                                           
23 The manuscript in general and this section, in particular, has benefited tremendously from the comments of 

anonymous reviewers. 
24 An introduction to neural networks from the perspective of econometricians is given in Kuan and White (1994).  
25 An exhaustive list of studies which employ ANN in financial forecasting is provided in Zhang, Patuwo and Hu 

(1998)’s authoritative review. Based on the vast number of studies reviewed in their survey, Zhang, Patuwo and Hu 

(1998) provide a comparative assessment of the predictive performance of ANNs relative to linear models. In addition 

to forecasting, ANNs have also been used in option pricing (Gradojevic, Kukolj and Gencay, 2009) and are popular 

in the bankruptcy prediction literature (see Zhang, Patuwo and Hu (1998) and the references therein). Because of their 

pattern recognition abilities, some researchers (see, for example, Kryznanowski, Galler and Wright, 1993) also explore 

ANNs’ usefulness in stock selection.  
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                         ),,,,(ˆ
211 pt xxxfS                                                    (11) 

where (.)f  denotes the (nonlinear) functional relation between p independent variables, known as 

inputs and denoted by pxx ,,1  , and the price of oil, referred to as the output. In a time series 

forecasting setup, the inputs are typically lagged values of the series itself. In this paper, the vector 

of inputs includes only lagged values of tS  so that equation (11) specializes to  

).,,,(ˆ
11 ptttt SSSfS     

In their authoritative survey on forecasting with ANNs, Zhang, Putawo and Hu (1998) note that 

selecting the network’s architecture is one of the important choices to be made by a researcher. 

Selecting the ANN’s architecture involves choices pertaining to (i) the number of input nodes, (ii) 

the number of hidden layers and (iii) the number of output nodes.26 The choice of hidden nodes is 

a particularly important, albeit challenging, decision that the forecaster should make. By increasing 

the number of nodes, a forecaster can approximate nonlinear dynamics of unknown form 

arbitrarily closely and can train the ANN to any desired level of in-sample fit. This, in turn, might 

lead to overfitting and does not necessarily yield improved out-of-sample performance. 

We employ a two-layer feedforward network with three inputs (i.e. three lags of tS ). While we 

choose the number of inputs by trial-and-error,27 the choice of two layers is motivated by Zhang 

(1994)’s findings which demonstrate that forecasts of a particle time series from the Santa Fe 

forecasting competition that are generated from a network with two hidden layers are superior to 

those from a network with a single layer.28 We use the hyperbolic tangent (tanh) function as an 

activation function. Our starting point is to use the backpropagation algorithm, which is a gradient 

steepest descent optimization algorithm (Zhang, Putawo and Hu, 1998), to train the ANN.  

However, when the ANN is trained using the backpropagation mechanism, the forecasting results 

                                                           
26 In our case, we only have single output, which is the price of oil. Other important choices to be made include 

selecting the activation function, the training algorithm and the training and test samples (Zhang, Putawo and Hu, 

1998). 
27 The trial-and-error approach is referred to by Zhang, Putawo and Hu (1998) as the shotgun approach. The authors 

also discuss heuristics (or rules of thumb) relating to the choice of number of nodes. As discussed next, we follow 

Szafranek (2017) by experimenting with (i.e., randomizing) the number of nodes when we implement bootstrap 

aggregation. Out results suggest that the ANN with two hidden nodes and three inputs generates superior forecasts 

than when we randomize the number of inputs and layers under bootstrap aggregation.  
28 In addition, the choice of two hidden layers is consistent with Zhang, Patuwo and Hu (1998) who note that “In our 

view, one hidden layer may be enough for most forecasting problems. However, two hidden layers may give better 

results for some specific problems, especially when one hidden layer network is overladen with too many hidden 

nodes to give satisfactory results.”  
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hinge upon the starting (guess) values and the algorithm might suffer from local optima (Zhang, 

Putawo and Hu, 1998). The high variance and instability of the forecasts from an ANN are a result 

of the training algorithm being stuck in such local optima. Therefore, relying on a single ANN will 

lead to inferior forecasts given that ANNs are unstable predictors and, as articulately discussed by 

Zhang, Putawo and Hu (1998), are characterized by high variance. We address the high variance 

of ANN forecasts using a three-pronged approach.  

First, recent contributions to the literature resort to, in the parlance of artificial intelligence and 

machine learning researchers, ensembling neural networks (Zhou, Wu and Tang, 2002) in order to 

obtain more robust forecasts. That is, researchers build an ensemble of neural networks and 

aggregate their output to obtain a single prediction.  The aggregate output typically exhibits higher 

predictive accuracy and lower variance than the forecast from a single ANN.  

A popular approach to aggregating neural networks is bootstrap aggregation (also known as 

bagging).29 Bagging consists of estimating ANNs using several bootstrap (training) samples and 

generating forecasts from each sample (Szafranek, 2017). The forecasts from bootstrap samples 

are then averaged to produce a single forecast which typically exhibits lower variance and higher 

prediction accuracy than a single ANN’s forecast (Khwaja et al., 2015). When implementing 

bagging, we employ the Efron bootstrap and follow the literature in econometrics (Szafranek, 

2017) by using one hundred replications.30 The forecasts from the ANN with bagging are, 

henceforth, referred to as BANN. 

Second, we train the neural network using the genetic algorithm. The genetic algorithm is an 

evolutionary search process which overcomes the problem of local minima by assisting the 

researcher in finding better guess (starting) values for the search algorithm (McNelis, 2005).31 The 

forecasts that we generate from the neural network with the genetic algorithm as a training 

algorithm are referred to as GAANN.  

Third, we combine fuzzy logic with neural networks to enhance the forecasting performance of 

the ANN. Fuzzy logic is a computational approach which permits partial truths instead of binary 

                                                           
29 Bagging has also been shown to reduce the forecast errors of the models when applied to linear forecasting models 

by econometricians. See, for example, Inoue and Kilian (2008) and Rapach and Strauss (2010).  
30 Existing research (Breiman, 1996) suggests that the gain from bagging stabilizes after twenty-five replications. 

Nonetheless, we follow the econometrics literature (Inoue and Kilian, 2008; Rapach and Strauss 2010; Szafranek, 

2017) by using one hundred bootstrap replications.  
31 McNelis (2005) identifies the following steps for the genetic algorithm: (i) population creation, (ii) selection, (iii) 

crossover, (iv) mutation, (v) election tournament, (vi) elitism and (vi) convergence.  
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signals (Novák, Perfilieva and Močkoř, 1999). As noted in Buckley and Hayashi (1994), a fuzzy 

neural network is one with fuzzy signals and/or fuzzy weights. We also apply bagging to the fuzzy 

neural network and the forecasts are referred to as FANN.  

We guard against overfitting by (i) using a small number of nodes, (ii) implementing an early 

stopping mechanism and (iii) using a validation sample. In fact, Nakamura (2005) highlights the 

importance of early stopping in improving the predictive performance of a neural network. Our 

training sample extends from January 2, 1990 to January 1, 2008. The validation sample spans the 

period January 2, 2008 to January 1, 2010 while the test period is, consistent with the out-of-

sample forecasting period for the linear models, January 4, 2010 to July 21, 2017. 

 

4. Statistical Forecast Accuracy 

We start by assessing the statistical forecast accuracy of our competing models. To do so, we 

employ a number of commonly used forecast accuracy measures. These criterions are: the Mean 

Absolute Error (MAE), the Root Mean Squared Error (RMSE) and the Mean Absolute Percentage 

Error (MAPE). Each of the latter three criterions uses a different loss function. That is, each of 

these criterions penalizes large forecast errors differently. In addition to the prior criteria, we 

employ Theil’s U statistic and the out-of-sample R2. We discuss each of these statistical forecast 

accuracy measures next.  

4.1. Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) uses the absolute value of the forecast errors as a loss function. 

Let Tf denote the size of out-of-sample forecast evaluation sample. The MAE is given by: 

     



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SS
T

MAE
1

ˆ1
,       (12) 

for 11,,1i  and where 1,..., Tf  is the out-of-sample forecast sample and tŜ is a forecast of the 

price of oil from one of the competing models. The model with the smallest MAE exhibits the 

highest predictive accuracy according to this criterion. 

4.2. Root Mean Square Error (RMSE) 

Unlike the MAE, the RMSE uses a quadratic loss function given by: 



18 
 

      



fT

t

i

tt

f

SS
T

RMSE
1

2
ˆ1

,       (13) 

for 11,,1i .  Again, the model with the lowest RMSE would outperform competing models in 

terms of out-of-sample forecasting. We note, however, that large forecast errors are penalized more 

severely under the RMSE than the MAE. 

 

4.3. Mean Absolute Percentage Error (MAPE) 

Another criterion that we employ to assess statistical forecast accuracy is the Mean Absolute 

Percentage Error (MAPE). MAPE is given by: 

                                                      
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for 11,,1i There are two advantages to using MAPE: First, this criterion is bounded by zero 

from below. Second, MAPE can be interpreted as a percentage error.  

4.4. Theil’s U Statistic 

Theil’s U statistic is another widely used statistical forecast accuracy criterion. First proposed by 

Theil (1966), this statistic is given by: 
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for 10,,1i  and where RW

tŜ is a forecast of the price of oil from the random walk benchmark.  

A Theil’s U statistic lower than one is indicative that a model’s forecast is more accurate than 

the random walk while a value of the U statistic greater than one implies that the model under 

consideration is less accurate than the random walk. When Theil’s U statistic is equal to one, the 

random walk and the model under consideration are equally accurate. 
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4.5. Out-of-Sample R2 (OoS) 

The Out-of-Sample R2 (OoS) is an increasingly more popular method for assessing forecast 

accuracy in the financial economics and forecasting literatures.32 The OoS R2 is given by: 
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for 10,,1i  and where RW

tŜ is the forecast of crude oil prices from the random walk 

(benchmark) model. Note that OoS can be equivalently written in terms of the MSE of the model 

under consideration, MSE, and that of the random walk benchmark, MSERW. 

A positive (negative) value of the OoS indicates that the model under consideration outperforms 

(underperforms) the random walk in terms of out-of-sample forecast accuracy.  

4.6. The Diebold and Mariano (1995) and Clark and West (2007) Tests 

While ranking the models based on the various loss function is a useful starting point, we also 

assess the statistical significance of differences in the loss functions. First, we employ the modified 

Diebold and Mariano (1995), henceforth DM, test. Denote the difference in loss functions by

)ˆ()ˆ( 111111

R

tttttt SSLSSLLd    where 1
ˆ
tS is the forecast from one the competing and RW

tS 1
ˆ


is the forecast from the random walk model.  

The DM test for the null of equal predictive accuracy 0][: 10 tdEH is given by the test statistic 

d
d ̂ where d is the mean sample differential and 

d
̂  is a consistent estimate of the standard 

deviation of .d  Under certain regularity conditions, the latter test statistic follows the standard 

normal distribution. Harvey, Leybourne and Newbold (1997) introduce a degrees of freedom 

adjustment for the variance of the DM statistic and employ the critical values from the t 

distribution. We employ the Harvey, Leybourne and Newbold (1997) modified version of the DM 

test and refer to it as MDM. 

When comparing nested models, the DM statistic follows a nonstandard distribution. Therefore, 

existing studies (Rapach, Strauss and Zhou, 2010 among others) employ the Clark and West (2007) 

modified version of the DM statistic. The Clark and West (2007) MSPE-adjusted statistic yields 

                                                           
32 The OoS is used, among others, by Welch and Goyal (2008) and Campbell and Thompson (2008). 
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asymptotically valid comparisons (with the standard normal critical values) for nested linear 

models. The MSPE-adjusted statistic can be computed by first defining: 

                         ].)ˆˆ()ˆ[()ˆ( 2
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The statistic can then be obtained by regressing ft+1 on a constant and computing the t-statistic and 

the p-value for a one-sided upper tail test (Rapach, Strauss and Zhou, 2010). 

 

4.7. Conditional Test of Forecasting Performance  

We provide a more detailed assessment of the predictive performance of the different models by 

also employing the conditional test of predictive accuracy of Giacomini and White (2006). The 

Giacomini and White (2006) test is given by the Generalized Method of Moments (GMM) 

quadratic form: 
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where W is the optimal weighting matrix in the GMM problem. The GW statistic follows a 2

distribution. In our forecasting exercise, the GW statistic follows a 2 distribution with two 

degrees of freedom. A (negative) positive value of the statistic is indicative that the competing 

model (under) outperforms the random walk.  

The null hypothesis of the GW test is one of equal predictive accuracy between the random walk 

benchmark and the competing model’s forecast. The GW test has several advantages (Elliott and 

Timmermann, 2016). First, it accounts for the effects of estimation error on the forecasts. Second, 

it is a finite-sample test, as opposed to an asymptotic one which compares the predictive 

performance of two models in the population, so that the estimation error does not vanish (Elliott 

and Timmermann, 2016).33  

 

4.8. Statistical Forecast Accuracy Results 

Panel A of Table 3 provides the MAE, RMSE, MAPE, Theil U, OoS statistics for our competing 

models. 

                    [Insert Table 3 here]  

 

                                                           
33 The Diebold and Mariano (1995) test, which can also be used to assess the significance of the differences in the loss 

functions among the competing forecasts cannot be used for comparing nested models.  
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The results indicate that the financialization and demand models outperform all the competing 

models in terms of MAE, RMSE and MAPE. The third best performing model according to the 

MAE is the random walk while two models (the ECM and LINEAR 1 models) outperform the 

random walk according to the RMSE. While the FANN’s predictive accuracy is broadly in line 

with that of the linear models, the BANN performs significantly worse than the linear models. This 

is likely to be a result of the backpropagation algorithm being stuck in local minima. The 

GAANN’s statistical accuracy, while worse than that of the linear models, is closer to that of the 

FANN than that of the BANN. Similar conclusions regarding the superior out-of-sample forecast 

accuracy of the financialization and demand models can be gleaned from Theil U’s statistic. 

Namely, the Theil U statistic is less than one, albeit only marginally, for the demand, 

financialization, LINEAR 1 and ECM models again suggesting that these models outperform the 

random walk.  

Panel B of Table 3 reports the OoS R2 statistic, the Giacomini and White (2006) test, the 

modified Diebold and Mariano (1995) test as well as the MSPE-adjusted statistic of Clark and 

West (2007). The OoS R2 is positive for the demand, financialization, LINEAR 1 and ECM models 

while it is negative for all the remaining models. When the GW test is used to assess predictive 

accuracy, our results indicate that the random walk benchmark statistically significantly (at the 5% 

level) outperforms all the models except the demand, ARMA, ECM, financialization and FANN 

models. For the latter five models, the null of equal predictive accuracy between the model and 

the random walk cannot be rejected.34 According to the MDM statistic, only the ECM model 

performs better than the random walk albeit the over performance is not statistically significant. 

Interestingly, the results of the Clark and West (2007) MSPE-adjusted statistic, which is better 

suited for comparing nested models, suggest that the ECM and FANN statistically significantly 

outperform the random walk.   

Overall, two main findings emerge from our results. First, outperforming the random walk 

benchmark in terms of forecasting daily crude oil prices is a very challenging task. Second, there 

is some evidence that the demand, financialization, ECM and FANN models appear to provide, 

out-of-sample predictive gains vis-à-vis the random walk. We turn next to assessing the economic 

significance of the uncovered predictability.  

                                                           
34 Note that the 5% level of significance is employed in light of the large out-of-sample forecasting sample. The GW 

test results also show that the LINEAR 1 model is outperformed by the random walk. 
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4.9. Forecast Optimality, Forecast Encompassing and Forecast Combination 

A desirable property of forecasts is that of optimality with respect to an information set (Diebold, 

2014). Optimality necessitates that forecast errors, tt SS ˆ , be unpredictable given the information 

at time t. Instead of testing predictability in the forecast errors directly, researchers commonly 

employ the Mincer and Zarnowitz (1969) regression to test for forecast optimality. The Mincer-

Zarnowitz regression is given by: 

                                      ttt eSS  ˆ.10  ,                                                 (19)          

for t = 1, …,Tf. Forecast optimality entails that the null hypothesis 1,0: 100  H is not 

rejected. We next assess the optimality of the forecasts from each of our competing models by 

estimating the Mincer-Zarnowitz regression in equation (19) for each of our forecasts.  

The results from the forecast optimality tests in equation (19) are provided in Panel A of Table 

4.  

     [Insert Table 4 here]  
 

Our results indicate that the null of forecast optimality cannot be rejected, at the 5% level, for any 

of forecasts except for the BANN and FANN.35   

The existing literature emphasizes the predictive gains that can be achieved by combining 

forecasts (Timmermann, 2006). These gains in forecast accuracy are attributed to the forecast 

combination’s success in attenuating model and parameter uncertainty. In fact, individual 

forecasting models are likely to be misspecified and this complicates identifying a best performing 

model (Elliott and Timmermann, 2016). In the context of predicting oil prices, Baumeister and 

Kilian (2015) show that combining oil price forecasts generates predictive gains relative to the no-

change (i.e. random walk) forecast.  

We test for forecast encompassing using a regression in differences so as to avoid spurious 

regression problems: 

                                               t
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tt SSSS   )ˆˆ(ˆ ,                                     (20) 

where tŜ is the forecast from one of the competing models and 
RW

tS is the random walk forecast.  

                                                           
35 We employ a size of 5% given the large sample size (for the in-sample and out-of-sample periods). 
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The null of forecast encompassing is given by 0:0 H versus the one-sided alternative

0:1 H . For forecast combination to achieve statistical gains, the information in one forecast 

should not be encompassed (or subsumed) by the information contained in another forecast 

(Diebold, 2014).  

Panel B of Table 4 provides the results from estimating the forecast encompassing regression in 

equation (19). The results show that the null that the random walk forecast encompasses the 

competing forecast cannot be rejected for any of the models except the ECM. In light of these 

results, we do not resort to forecast averaging and proceed to the trading exercise used to assess 

the economic significance of our results. 

 

5. Direction Change Forecasting and Trading Strategies: Assessing Economic Significance 

Since the contribution of Leitch and Tanner (1991), researchers recognize that statistical forecast 

accuracy does not invariably translate into economic profitability. In fact, Leitch and Tanner 

(1991) show that the correlation between statistical accuracy measures and profitability need not 

be positive or significant. Leitch and Tanner (1991) also note that forecasts which exhibit high 

directional accuracy are more likely to generate profits. Satchell and Timmermann (1995) offer 

arguments that are in line with those of Leitch and Tanner (1991). In this section, we assess the 

directional accuracy of our competing forecasts and design a trading strategy to examine the 

economic significance of our results. To do so, we employ crude oil price changes, ts , as well as 

directional changes in the price of oil from one the competing forecasts/models
i

tŝ . 

 

5.1. Directional Forecast Accuracy 

We begin by assessing the directional forecast accuracy of our models. To this end, we use the 

percent correct sign predictions given by: 
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where 1tz if 0ˆ. 1  tt ss and 0 otherwise. The % correct sign predictions are computed for 

our out-of-sample forecast evaluation period t = 1,…Tf. 
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5.2. Trading Strategy and Transaction Costs  

Trading signals are generated based on directional forecasts of logarithmic changes in predicted 

crude oil prices, 
i

tŝ . We adopt two simple trading strategies. Under the first, the investor goes 

long the first crude oil futures contract when the predicted crude oil price changes are positive. 

When the predicted oil price change is negative, the investor does not trade and earns the risk-free 

rate. We assume that the investor trades only directionally so as to minimize transaction costs. We 

refer to this strategy as the long-only strategy. Under the second, the investor goes short the front 

crude oil futures contract if the predicted return is negative and stays outside of the market, earning 

the risk-free rate, when the predicted crude oil price changes are negative. We refer to this strategy 

as short-only strategy.36 The latter two strategies incur lower transaction costs than a long-short 

strategy since they require less frequent trading. 

As a result of the high liquidity in the front crude oil futures contract, transaction costs are small. 

The unvaivalabity of bid and ask price data prevents obtaining estimates of transaction costs 

directly. To circumvent that, we rely on estimates of transaction costs reported in the existing 

literature.  

  Bessembinder, Carrion, Tuttle and Venkataraman (2014) report a mean effective (quoted) 

spread of 1.96 (1.13) basis points (or 0.0196% for the effective spread and 0.0113% for the quoted 

spread) for the front month (i.e. first or nearest) crude oil futures contract. We employ the quoted 

spread of Bessembinder, Carrion, Tuttle and Venkataraman (2014) of 0.0113% as our cost for a 

round trip and use the quoted half spread for a single trade (Bessembinder and Venkataraman, 

2010). When a model predicts consecutive positive (negative) price changes, we assume that the 

long (short) position is maintained so as to minimize transaction costs. 

 

5.3. Buy-and-Hold Strategy  

This strategy assumes that the investor opens a long position in the first crude oil futures contract 

and closes the position at the end of the sample period. As noted before, we assume that the investor 

adopts a rolling over strategy under which she closes the open position in the nearest contract on 

                                                           
36 Data on the daily risk-free rate are obtained from Kenneth French’s data library. As a result of the Federal Reserve 

unconventional monetary policy actions (i.e. Large scale asset purchases or quantitative easing) the risk-free rate is 

very close to zero in our out-of-sample forecasting period.  
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the last day prior to the expiration month and opens a long position in the next-to-nearest contract. 

We further assume, for simplicity, that the investor does not incur any cost for rolling over from 

the front month to the second month futures contracts.  

Our assumptions imply that the buy-and-hold strategy does not incur transaction costs. This, in 

turn, makes the buy-and-hold strategy a more stringent benchmark against which to compare the 

profitability of our econometric forecasts.37 As a robustness check, we compute the returns to the 

buy-and-hold strategy using cash (spot) prices and our results are similar. However, we prefer 

using the first futures contract, as noted earlier, given that trading crude oil futures is simpler than 

transacting in the cash market.  

 

5.4. Moving Average Convergence Divergence (MACD) 

 

The moving average convergence divergence (MACD) is a popular technical analysis tool 

employed by traders. The performance of various variants of the MACD or momentum indicators 

has been thoroughly examined in trading commodity futures (Hurst, Ooi and Pedersen, 2013) and 

equities (Dbouk, Jamali and Soufani, 2014). 

  In a typical application, the use of the MACD requires the construction of three moving 

averages of crude oil price changes with different window sizes (i.e. number of days): a long, 

medium and a short moving average. We employ moving average window lengths of nine, twelve 

and twenty six days for the short, medium and long moving averages, respectively, given the 

popularity of this choice among traders (Dbouk, Jamali and Soufani, 2014).  

After creating the three moving averages, we construct the MACD line as the difference between 

the long and short moving averages. Trading signals are generated as follows: the investor longs 

(shorts) the front crude oil futures when the MACD line crosses the intermediate moving average 

from below (above). As discussed before, we appropriately account for transaction costs every 

time a trade is executed. Akin to the trading strategies built from econometric forecasts, we 

consider long and short only strategies. Under the long-only (short-only) strategy, the investor acts 

upon a buy (sell) signal and stays outside the market (thereby earning the risk-free rate) otherwise.  

Recent research suggests that the MACD strategy is successful in capturing time series 

momentum (Levine and Pedersen, 2016) and that time series momentum strategies can be 

                                                           
37 Said differently, our assumptions are advantageous to a passive investor.    
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profitably used to trade commodity futures (Moskowitz, Ooi and Pedersen, 2012; Hurst, Ooi, 

Pedersen, 2013). These latter observations motivate our use of the MACD and suggest that the 

MACD can generate profits for futures traders.  

 

5.5. Trading Profits and Directional Forecast Accuracy Results 

Table 5 provides the percent correct sign predictions of our forecasts as well as the risk-adjusted 

returns (i.e. Sharpe ratios) of our trading strategies. 

         [Insert Table 5 here] 

All of our linear and non-linear models succeed in outperforming the random walk in terms of 

directional forecast accuracy.  

We commence our trading exercise by evaluating the realized returns of the different forecasts 

on a risk-adjusted basis. Following Dbouk, Jamali and Kryzanowski (2016), we compute the 

Sharpe ratio as: 

                                                                    
)~(

)~(

it

it

r

rE


,                                                        (22) 

where itr~ denotes the realized return from trading based on forecast i and )~( itr is the standard 

deviation of the realized return.  

The results, also reported in Table 5, suggest that, with the exception of the MACD, all the 

Sharpe ratios for the long-only strategy are negative. These negative Sharpe ratios reflect the drop 

in crude oil prices which started towards the end of 2014. The buy-and-hold strategy, for example, 

generates a Sharpe ratio of -0.20. Only the MACD generates a larger risk-adjusted return than the 

buy-and-hold strategy. Our results also indicate that the Sharpe ratios for the short-only strategy 

are, with the exception of the MACD, negative. However, trading based on forecasts from the 

LINEAR 2, ARMA, ECM, ARDL, BANN, GANN and FANN provides a Sharpe ratio that is equal 

to or larger than the buy-and-hold strategy. The Sharpe ratios of the short-only strategy are 

consistently higher than those of the long-only strategy. This is expected given that the short-only 

strategy is designed to exploit the downward trend in oil prices. 

The dollar payoffs, also reported in Table 5, provide similar conclusions as the Sharpe ratios. 

More specifically, only the terminal payoff of an initial $100 investment accrues to $115.66 for 

the MACD under a long-only strategy while the dollar payoffs of the remaining forecasts are lower 

than $100. Again, the dollar payoffs are larger for the short-only strategy than the long-only 
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strategy and trading based only on the MACD provides a terminal payoff greater than $100. 

Interestingly, while the buy-and-hold strategy yields dollar payoff that are larger than those of 

some of the linear models under a long-only strategy, all the models generate a higher dollar payoff 

than the buy-and-hold strategy under a short-only strategy. This implies that the models that we 

consider are better able to predict negative crude oil price changes than the random walk. This 

superior ability in predicting negative price changes translates into the higher profitability of the 

short-only strategy for the model forecasts.38 

 

6. Concluding Remarks 

This paper thoroughly examines the ability of linear and nonlinear models to predict the daily price 

of oil. We generate rolling one-step-ahead out-of-sample from linear and nonlinear models for the 

period January 4, 2010 to July 21, 2017. Two of the models that we employ are novel to the 

literature: the first is the demand model which exploits the informational content of copper prices 

as a proxy of global economic activity. The second, which we refer to as the financialization model, 

exploits the increased correlation between oil and equity prices as well as the predictive power of 

exchange rate changes. The nonlinear model that we consider is an artificial neural network. More 

specifically, we consider a neural network with bootstrap aggregation, a neural network trained 

using the genetic algorithm as well as a neural network combined with fuzzy logic. 

After assessing the statistical accuracy of the competing forecasts, we examine the economic 

significance of the forecasts using a trading exercise. More specifically, we consider long-only and 

short-only trading exercises according to which an investor trades based on the sign of the 

predicted oil price change from one of the competing models. The profitability of the trading 

strategies is compared to that of the buy-and-hold strategy as well as to trading based on the 

moving average convergence divergence, a technical indicator. 

We find that some of the linear models outperform the random walk in terms of out-of-sample 

statistical forecast accuracy. Our findings also suggest that while the buy-and-hold strategy 

dominates some of the models in terms of dollar payoffs and risk-adjusted returns under a long-

only strategy, all the models that we consider generate higher dollar payoffs than the buy-and-hold 

strategy under the short-only strategy. We also find that the profits from the short-only strategy 

                                                           
38 Pesaran and Timmermann (1994) note that the ability of a model to accurately predict negative changes is an 

important determinant of its profitability.  
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are consistently larger than those of the long-only strategy. This likely reflects the superior ability 

of the linear and nonlinear models, vis-à-vis the random walk, in predicting negative oil price 

changes, which became more frequent with the decline in the price of oil at the end of 2014. 

Trading based on the MACD, a technical indicator which adequately captures trends, generate the 

largest payoff among all the competing models.  
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TABLE 1 Unit Root Tests and Descriptive Statistics for Crude Oil Prices and Price Changes 

Panel A: Unit Root Tests for Crude Oil Prices     

  ADF ADF-GLS 

Full Sample -2.00 -1.98 

In-Sample Period -2.31 -1.77 

Out-of-Sample Period -2.09 -1.42 

Panel B: Unit Root Tests for Log Crude Oil Prices   

  ADF ADF-GLS 

Full Sample -2.34 -2.11 

In-Sample Period -2.77 -1.88 

Out-of-Sample Period -2.11 -1.53 

Panel C: Summary Statistics for Crude Oil Returns   

  Mean Median Std. Dev. AC(1) Skewness Kurtosis 

Full Sample 0.01 0.00 2.38 -0.01 -0.73 18.58 

In-Sample Period 0.02 0.00 2.49 -0.00 -0.91 20.32 

Out-of-Sample Period -0.02 0.00 2.06 -0.05 0.09 6.09 
Notes: Panel A provides the unit root tests of the oil price series. ADF refers to the Augmented Dickey Fuller Test of 

Dickey and Fuller (1979). The ADF-GLS test refers to the ADF test with GLS detrending of Elliott, Rothenberg and 

Stock (1996). Panel B provides the summary statistics of crude oil returns. AC(1) refers to the first-order 

autocorrelation and Std. Dev. refers to the standard deviation.  
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TABLE 2 Summary Statistics and Cross-Correlations of Predictors 

Panel A: Summary Statistics for Predictors 

  Mean Median Std. Dev.  AC(1) Skewness Kurtosis 

ΔPCOM 0.007 0.000 0.408 0.064 -0.459 9.045 

ΔEXRATE -0.003 0.003 0.435 -0.001 -0.239 6.475 

ΔYIELD -0.001 0.000 0.057 0.027 0.034 5.260 

ΔCOPPER 0.013 0.000 1.627 -0.062 -0.190 7.321 

ΔVIX -0.000 -0.010 1.492 -0.091 0.685 21.871 

ΔBDI -0.005 0.027 0.410 0.998 -1.744 11.335 

Panel B: Cross-Correlations of Predictors 

  ΔPCOM ΔEXRATE ΔYIELD ΔCOPPER ΔVIX ΔBDI 

ΔPCOM 1.000 - - - - - 

ΔEXRATE -0.223 1.000 - - - - 

ΔYIELD 0.099 0.045 1.000 - - - 

ΔCOPPER 0.363      -0.245 0.134 1.000 - - 

ΔVIX -0.118 0.047 -0.169 -0.194 1.000 - 

ΔBDI 0.063 -0.006 0.029 0.041 -0.006 1.000 
Notes: The table provides the summary statistics and cross-correlations of crude oil price changes. ΔPCOM refers to 

the logarithmic change (in percent) in the CRB spot commodity price index. ΔEXRATE is the logarithmic change (in 

percent) in the U.S. dollar trade-weighted exchange rate. ΔYIELD is the change in the yield on the U.S. ten year 

Treasury note. ΔCOPPER is the logarithmic change (in percent) in the prices of the nearest copper futures contract. 

VIX is the level of the CBOE option-implied volatility index. ΔBDI is the three-month logarithmic change (in percent) 

in the Baltic Dry Index. AC(1) denotes the first-order autocorrelation and Std. Dev. denotes the standard deviation.  
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TABLE 3 Statistical Forecast Accuracy and Testing Differences in Forecast Accuracy 

Panel A: Statistical Forecast Accuracy Measures   

  MAE RMSE MAPE Theil U 

Random Walk  1.0154 (3) 1.3775 (5) 0.0146 (3) 1.0000 

Linear 1  1.0308 (7)  1.3741 (3) 0.0148 (7) 0.9975 

Linear 2  1.0583 (9)  1.4156 (9) 0.0151 (9) 1.0276 

Demand 1.0045 (2) 1.3445 (2) 0.0145 (2) 0.9760 

ARMA  1.0214 (5)  1.3812 (7) 0.0147 (5) 1.0026 

ECM 1.0175 (4) 1.3745 (4) 0.0147 (4) 0.9961 

ARDL 1.0405 (8) 1.4000 (8) 0.0150 (8) 1.0163 

Financialization 0.9978 (1) 1.3401 (1) 0.0144 (1) 0.9728 

BANN   6.9012 (11)    13.8974 (11)   0.0717 (11) 10.0895 

GAANN   2.4081 (10)    3.8655 (10)   0.0281 (10) 2.8063 

FANN 1.0222 (6) 1.3796 (6) 0.0147 (6) 1.0000 

Panel B: Tests of Statistical Differences in Forecast Accuracy 

  OoS GW MDM MSPE-adjusted  

Random Walk - - - - 

Linear 1 0.49    20.00(-) -3.64 0.54 

Linear 2 -5.60     17.61(-) -4.95 -0.36 

Demand 4.73 0.10 -0.43 1.19 

ARMA  -0.53 1.66 -1.23 0.02 

ECM 0.43 1.54 1.23       2.57*** 

ARDL -3.29     17.56(-) -1.15 -3.58 

Financialization 5.35 0.35 -0.46 0.74 

BANN -10079.87      373.34(-) -4.17 1.15 

GAANN -687.58      337.17(-) -4.63 1.21 

FANN -0.32 2.54 -0.52  1.30* 
Notes: The table provides the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Absolute 

Percentage Error, Theil U and Out-of-Sample (OoS) R2 statistic for each of the competing forecasts. The Theil U 

statistics that are less than one are in bold. Positive OoS statistics are in bold. The column GW reports the conditional 

version of the Giacomini and White (2006) statistic under quadratic loss. The GW test compares the predictive 

accuracy of a model to that of the random walk benchmark. A plus (minus) sign for GW indicates that the model 

outperforms (underperforms) the benchmark statistically significantly at the 10% level. The number in parentheses is 

the rank of the model/forecast according to the criterion chosen. MDM refers to the Harvey, Leybourne and Newbold 

(1997) modified version of the Diebold and Mariano (1995) test. MSPE-adjusted is the Clark and West (2007) statistic, 

which modified the Diebold and Mariano (1995) test to allow for comparing nested models. *, ** and *** denote, 

respectively, statistical significance at the 10%, 5% and 1% levels. 
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TABLE 4 Forecast Optimality and Encompassing Tests 

Panel A: Tests of Forecast Optimality 

  1̂   )ˆ( 1se  2̂   )ˆ( 2se   p-value 

Random Walk 0.082 0.094 0.998 0.001 0.52 

Linear 1 0.153 0.101 0.997 0.001 0.22 

Linear 2 0.104 0.090 0.998 0.001 0.33 

Demand  0.173 0.096 0.997 0.001 0.06 

ARMA 0.086 0.098 0.998 0.001 0.30 

ECM -0.060 0.097 1.000 0.001 0.80 

ARDL 0.016 0.106 0.995 0.001 0.80 

Financialization 0.154 0.095 0.997 0.001 0.09 

BANN 4.685 1.525 1.019 0.019 0.00 

GAANN -3.525 0.406 1.067 0.007 0.00 

FANN -0.114 0.103 1.001 0.001 0.53 

Panel B: Tests of Forecast Encompassing 

  ̂  )ˆ(se   p-value 

Random Walk - - - 

Linear 1 0.057 0.104 0.58 

Linear 2 -0.048 0.113 0.66 

Demand  0.397 0.271 0.14 

ARMA 0.012 0.402 0.97 

ECM 0.858 0.317 0.00 

ARDL -0.187 0.161 0.24 

Financialization 0.305 0.417 0.46 

BANN 0.002 0.002 0.20 

GAANN 0.010 0.008 0.18 

FANN 0.369 0.254 0.46 
Notes: The table provides the results from the forecast optimality and forecast encompassing tests in equations (18) 

and (19). The p-value in Panel A refers to the F-statistic used to test the null .1,0: 100  H The p-value in 

Panel B refers to the t-statistic used to test the null .0:0 H  Heteroskedasticity and autocorrelation consistent 

standard errors of Newey and West (1987) standard errors (with automatic lag selection) are reported next to each 

coefficient.  
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TABLE 5 Directional Forecast Accuracy and Trading Strategy Profitability  

    Payoff to $100 Sharpe Ratio 

  % Correct Sign Long Only Short Only 

Long 

Only 

Short 

Only 

Random Walk 44.74 - - - - 

Linear 1 47.47 $45.29 $57.13  -0.35 -0.23 

Linear 2 46.93 $39.83 $71.76  -0.40 -0.06 

Demand  46.52 $51.95  $51.79  -0.28 -0.29 

ARMA 46.22 $31.73 $56.51  -0.54 -0.19 

ECM 47.13 $41.26 $70.93  -0.42 -0.07 

ARDL 46.52 $32.36 $56.59  -0.53 -0.19 

Financialization 46.45 $44.57 $54.51  -0.39 -0.25 

BANN 48.40 $41.27 $71.11  -0.39 -0.06 

GAANN 47.13 $39.55 $68.38  -0.41 -0.08 

FANN 46.97 $40.60 $70.04  -0.40 -0.06 

MACD - $115.66  $144.94  0.15 0.31 

Buy-and-Hold - $38.77  $38.77  -0.20 -0.20 
Notes: The table provides the percent correct sign predictions, Sharpe ratios and terminal values of a $100 investment 

to long-only and short-only strategies based on the directional forecasts from the competing models. The trading 

strategy profits are compared to the profitability of trading based on a Moving Average Convergence Divergence 

(MACD) and Buy-and-Hold strategies.  


