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Abstract

Risk Measurement and Management in a Crisis-Prone World

The current �nancial crisis has highlighted once again the importance of risk management

in the modern world of �nance, where institutions such as banks and major hedge funds are

said to fail inevitably from time to time. The collapse of Barings in 1995, the LTCM crisis

three years later, and recently the debacles of Northern Rock, Bear Stearns and Lehman

Brothers are testimonies to the above statement. The two factors that underlie the �nancial

crises in the past two decades are leverage and portfolio of complex �nancial derivatives.

This motivates us to look again into the sources of risk at the tail of the distribution. In

particular, we investigate the risk contribution of an asset, which has infrequent but huge

losses when leverage is high, to a portfolio using two risk measures, namely Value-at-Risk

(VaR) and Expected Shortfall (ES). While ES is found to measure the tail risk contribution

e¤ectively, VaR is consistent with intuition only if the underlying return distribution is

well behaved. Having shown that ES is a preferred risk measure to quantify tail risk, ES

backtesting is the next objective of the paper. This is because (i) backtesting enables risk

managers to check if the risk models at hand can capture the underlying risk properly; (ii)

regulators rely on the outcome of backtest results to adjust the level of capital requirement,

punishing poor or rewarding good risk management practices; and (iii) as a consequence,

backtesting o¤er incentives for banks to continuously improve their risk models, thereby

raising the standard of risk management. Therefore, to facilitate the use of ES, we present

a power function formula that can calculate accurately the critical values of the ES test



statistic. The advantage of our ES backtesting lies in the use of the saddlepoint technique,

often described as small sample asymptotic method, which is very accurate and powerful

even if the number of VaR breaches is as small as one or two. This in turn enables us to

derive, along the line of the Basel II internal model, a size-based multiplication factor for

risk capital requirement.
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Risk Measurement and Management
in a Crisis-Prone World

Abstract

The current subprime crisis has prompted us to look again into the nature of risk

at the tail of the distribution. In particular, we investigate the risk contribution of

an asset, which has infrequent but huge losses, to a portfolio using two risk measures,

namely Value-at-Risk (VaR) and Expected Shortfall (ES). While ES is found to mea-

sure the tail risk contribution e¤ectively, VaR is consistent with intuition only if the

underlying return distribution is well behaved. To facilitate the use of ES, we present a

power function formula that can calculate accurately the critical values of the ES test

statistic. This in turn enables us to derive a size-based multiplication factor for risk

capital requirement.

Keywords: Value-at-Risk, expected shortfall, tail risk contribution, saddlepoint

technique, risk capital

JEL Classi�cation: G11, G32

1 Introduction

The 1998 failure of Long-Term Capital Management (LTCM) was said to be so severe that

it posed a serious threat to the world�s �nancial system. Barely ten years have passed, the

scale of the current subprime crisis exceeds the LTCM debacle in every respect: the dollar

value lost, the number of banks a¤ected and its e¤ects on the wider economy. Although

the current problems originate in subprime mortgages whereas LTCM invested mainly in

�xed income investments, both crises have one point in common: their return distributions

contain rare but extremely large losses.

Jorion (2000, p. 277) described LTCM�s pro�ts as bets on extreme events, like selling

options. This is supported by Agarwal and Naik (2004) who �nd that a large number of
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hedge fund strategies exhibit payo¤s resembling a short position in a put option on the

market index. As the Black-Scholes formula predicts, an out-of-the-money written put yields

frequent small pro�ts, but the loss incurred is large when it happens.1

Moreover, these extreme losses are often caused or exacerbated by high leverage. Though

the present crisis will probably cause risk managers in future to restrict the size of banks�

nominal exposure, the strategy of using leverage on various �nancial products has become

indispensable in an ever more competitive �nancial world. Indeed, as Damodaran (2005)

points out, risk management is not just about reducing risk; it may involve increasing a

�rm�s exposure to at least some types of risk that may give the �rm advantages over its

competitors. A simple example is the long-short strategy which, according to an investment

model, buys winners and short sell losers. While the risk of leveraging such a portfolio (so

as to generate better than benchmark returns) is calculated to be acceptable, the margin

for errors in the model, liquidity, counter party and other risks has also been reduced by

leverage. In sum, it is essential to measure and manage infrequent risks of large losses due

to leverage in modern �nance.

Value-at-Risk (VaR) is the sanctioned measure of risk and its widespread popularity has

raised the standard of risk management in the investment community. Both theoretical and

empirical research reveal that VaR yields many meaningful results.2 Nevertheless, Lo (2001)

lists several limitations of VaR as a measure of risk in hedge funds or investments with

an option-like nonlinear return structure. In this paper, we illustrate the use of Expected

Shortfall (ES), a risk measure that is complementary to VaR and tells investors the average

size of loss when a VaR is breached, to measure and manage aspects of the risk that underlie

1Indeed, rare-but-huge-loss payo¤ structure is not restricted to hedge funds. The world�s major banks also
share similar return patterns. For example, Berkowitz and O�Brien (2002) examined six large multinational
banks over the period from January 1998 to March 2000, and found that they also incurred huge losses
during the 1998 crisis.

2For instance, Dowd (1999) shows that for a �well-behaved�fat-tailed distribution, e.g. a t-distribution
with �ve degrees of freedom, the Sharpe rule for risk management decision-making remains valid if VaR
is calculated based on the appropriate t-distribution value. Another example is the recent work of
Bali and Cakici (2004), which �nds that VaR, together with stock size and liquidity, can explain the cross-
sectional variation in expected returns.
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the extraordinary �nancial crises mentioned earlier.

2 Risk Contribution

Given the complexity of modern �nancial investments, Lo (2001) highlights the need to

capture the spectrum of risks involved. For example, a risk manager needs to consider the

dangers of diminishing correlations for an arbitrage fund, factor exposures to the market

index for a long-short strategy, optionality and in�ationary pressures for a �xed-income

hedge fund, and so on. In this section, we use both VaR and ES to measure how each asset

or subportfolio contributes to the tail risk of a portfolio. Risk contribution analysis helps to

identify the sources of risk and is a step towards managing rare but extreme risks e¤ectively.

There are many further advantages in carrying out a risk contribution analysis using

VaR and ES. Firstly, correlation and linear models are the traditional tools used to attribute

sources of risk. However, Embrechts et al. (1999) point out that dependence measured by

linear correlation does not hold in a non-elliptical world, which is often characterized by

skewed and fat-tailed returns. Unlike linear correlation, a VaR or ES contribution focuses

on the dependence between the portfolio and its components at the tail of the distribution,

which is useful for managing extreme risks.

Secondly, Embrechts et al. (1999) introduce for measurement of nonlinear dependence

the concepts of comonotonicity and copula, which may be di¢ cult for general investors to

understand. VaR is a risk measure that condenses a usually complex distribution of returns

into a single number that can be easily understood by investors and risk managers as well

as regulators. As measures of how much an asset or subportfolio is contributing towards a

portfolio�s tail risk, both VaR and ES have the attraction of being simple enough to be easily

understood.
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2.1 VaR and ES Contributions

VaR can be de�ned as the maximum loss on a portfolio over a speci�ed period (typically 10

working days) with a given con�dence level, say 1 � �: Let R be the portfolio return with

distribution function F . If F is continuous,3

V aR�(R) = �F�1(�):

Note that in this paper, a negative R means a loss whereas the risk measures, e.g. VaR

and ES, are represented by positive numbers. Hence, ES of the portfolio, de�ned as the

expected loss given that a loss exceeds VaR, can be written as

ES�(R) = E[�Rj �R > V aR�(R)]:

Where there is no ambiguity, the subscript � and argument R will be dropped for simplicity.

Former de�nitions provided by Tasche (2002) for attributing VaR and ES risk contribu-

tions to portfolio components are now stated as follows. Suppose there are d assets in the

portfolio. The portfolio return R can be written as

R =

dX
i=1

!iRi;

where Ri and !i are respectively the return and weight for the i-th asset. Under certain

smoothness assumptions on the joint distribution of (R1; :::; Rn), the contribution of !iRi to

the portfolio�s VaR is de�ned as

V aRCi = E [�Rij �R = V aR] � !i:
3For the sake of simplicity without a¤ecting the result of our research, all distributions considered in this

paper, unless stated otherwise, are absolutely continuous.
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Similarly, the ES-contribution of i-th asset to the portfolio�s ES is given by

ESCi = E [�Rij �R > V aR] � !i:

Note that in both cases the sum of risk contributions of each asset is equal to that of the

portfolio. That is,
Pd

i=1 V aRCi = V aR and
Pd

i=1ESCi = ES. If it is to be a satisfactory

guide to risk management, V aRCi or ESCi should provide some indication of how great is

the contribution of each asset to the tail risk of the portfolio as a whole. In doing so, it

should change monotonically as risky assets are added to a portfolio. Appendix A.1 at the

end of this paper provides details on the numerical methods used to approximate the risk

measures.

2.2 A Portfolio with Derivative Assets

We consider a portfolio made up of an investment of $1 divided between three assets: (1) the

S&P 500 stocks, (2) an index of corporate bonds, (3) an index of 7-10 year Treasury bonds,

plus (4) a written put on the S&P500 with varying degrees of moneyness, k = �5%; :::;+5%:4

The results reported here are based on a sample of daily data for the period 3 August 1998 to

27 May 2008, a total of 2470 observations. The characteristics of the dataset are summarised

by the statistics given in Table 1.

< Insert Table 1: Basic Statistics >

Thoughout the analysis, the dollar investments in the �rst three assets remain �xed:

$0.143 in S&P 500, $0.571 in corporate bonds and $0.286 in Treasury bonds.5 We focus here

4The moneyness, k; is de�ned as (strike - current price)/current price.
5Since experience shows that the standard deviation of stock returns is about four times as great as

that on corporate debt, these proportions mean that the value of the investment in stocks and bonds have
approximately equal volatility.
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on the impact on the portfolio as a whole when there are changes in the moneyness of the

written put. Table 2 provides the results based on daily returns.

2.2.1 The Case of No Leverage

First, consider the case of no leverage in Panel A where the value !4 of the short position

in the option remains at $0.107. As the written put is increasingly out-of-the-money, its

volatility diminishes. Though the portfolio�s skewness and kurtosis indicate a larger downside

risk, decreasing values of VaR, ES and worst loss reveal a net e¤ect of lower risk pro�le for

the portfolio as a whole. As the basic principle of �nance dictates a lower return for lower

risk, the portfolio�s average daily return decreases from k = 0% onwards. Applying the

Sharpe rule of Dowd (1999) based on the ratio of average return to VaR, the portfolio is

optimized at k � �1%.

2.2.2 The Case of Leverage

In highly e¢ cient �nancial markets, opportunities for abnormal pro�t can often be eroded

due to competition, so that trading may not be feasible at the optimum, but only at lower

k, say �4%. Since the return is now far lower, leverage is used to pursue higher payo¤s.

Panel B shows the results when leverage is only applied to the option position, with value

of investment !4 increasing from $0.107 to $0.795.6 Several interesting observations can be

made. First, the portfolio volatility remains almost constant (with a very small decline from

k = 1% onwards). Second, con�icting messages are signalled by VaR and ES. VaR peaks

at k = �3% and then decreases when the option is further out-of-the-money, indicating the

tail risk of portfolio decreases from that point onwards. By contrast, the increase in ES is

monotonic. That ES provides a more correct picture of extreme risk is supported by the

same monotonic increases of worst loss, size of negative skewness, and kurtosis.

These examples are consistent with the �ndings of Basak and Shapiro (2001), who show

6In our simpli�ed case, borrowing costs are ignored and leverage is represented by the increase in !4 from
$0.107 to $0.795.
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theoretically that, if investors optimized their portfolios with VaR constant, larger losses

would be incurred during adverse market downturns.

2.2.3 Risk contributions

VaR and ES risk contributions are summarised in the rest of Panel B in Table 2, and

graphically in Figure 1 and 2. For ease of comparison, each VaR (ES) contribution is divided

by the corresponding portfolio VaR (ES) so that the reported �gures are in percentages that

sum to 100. In general, the message is that VaR behaves sensibly if the (possibly fat-tailed)

return distribution is relatively well behaved,7 and that ES proves a more reliable measure,

especially for highly nonlinear payo¤s.

In the �rst place, when the put is deeper in-the-money (k � 3%), there is little variation in

risk contributions as measured by either measure, but considerable disagreement between the

two risk measures with respect to the three risky assets, namely equity (asset 1), corporate

bonds (asset 2) and option (asset 4). Next, over near-the-money range (2% � k � �2%),

when there is little nonlinearity in the option�s payo¤, both VaR and ES detect increasing risk

contributions from the larger investments in the short put position. There are corresponding

drops in risk contributions for corporate bonds and Treasury over this near-the-money range.

Finally, beyond k = �0:02 when the option is further out-of-the-money (and thus the

payo¤ structure is highly nonlinear), VaR counter-intuitively indicates a smaller risk for

higher leverage in the written put. Also, equally perverse is the corresponding sharp rise

in risk attributable to the corporate debt. Unlike VaR, the ES contribution of the option

increases monotonically with smaller k, re�ecting rising risk due to leverage and the nonlinear

payo¤ structure in the written put position. It is noteworthy that with larger leverage, the

option replaces the corporate bond as the main contributor of risk to the portfolio.

< Insert Table 2: Risk Contributions >
7Our results are consistent with the conclusions of Dowd (1999); see footnote 2.
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3 Nonlinearities

Nonlinear payo¤ structure is another reason given by Lo (2001) for not using VaR as a

risk measure in hedge funds. The risk contribution analysis given in the previous section

illustrates the case: VaR misleads investors into a false sense of security for deep out-of-

the-money puts with highly nonlinear payo¤s. The main reason for this lies in the fact

that VaR is a quantile measure which ignores sizes of losses beyond the VaR boundary;

Yamai and Yoshiba (2005) describes this as the tail risk of VaR. Lessons from the LTCM

and current subprime crises suggest that the nonlinear payo¤ structure could be modeled

as regime switches between normal and disaster states. Base on a regime-switching payo¤

structure of this kind, we provide analytical illustrations of why it is crucial for a risk measure

to take into account the sizes of losses beyond VaR.

Consider a portfolio whose return has a standard Gaussian distribution, �, during nor-

mal times, but with a small probability p of a disaster bringing a huge loss L. Then the

distribution of the portfolio return can be written as

F (R) =

8><>: p+ (1� p)�(R) if R � �L;

(1� p)�(R) if R < �L:

Since disaster is rare, it is reasonable to assume that p < �, the tail probability at which

VaR is calculated. As it is often the case that L > V aR; Appendix A.2 shows that the

portfolio VaR can be obtained as

V aR = ���1 ((�� p)=(1� p)) ;

and the associated portfolio ES is
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ES = ��1

"
pL+

(1� p) exp
�
� (V aR)2 =2

�
p
2�

#
:

For market risk, Basle II set � = 0:01. If p = 0:005, V aR = �2:574: Note that in this case

VaR is independent of L, whereas ES increases with the size of extreme loss. For instance,

if leverage causes L to increase from 5 to 10, ES also increases from 3.945 to 6.445 whereas

VaR remains constant.

This provdes insights for the counterintuitive performance of VaR in the risk contribution

analysis. As the put becomes further out-of-the-money, nonlinearity in its return structure

increases until rare but large losses exist far in the tail of distribution.

4 Backtesting Rare Events

Backtesting plays a very important role in risk management. It enables risk managers to

�nd out if the model at hand is appropriate and gives regulators a means to punish poor

(or reward good) risk management practices. Further, the process of backtesting leads risk

professionals to search for better models, which in turn allows them to understand better

the nature of risk, thereby raising the standard of risk management.

Backtesting VaR is a simple matter of counting exceptions and computing their fail-

ure rate. If the model is adequate, the rate of exceedance should be 5% or 1%, depend-

ing on the con�dence level set for VaR. This is the basis of the Basle, Kupiec (1995) and

Christo¤ersen (1998) tests. By contrast, since VaR exceptions are by de�nition rare in prac-

tice, there are too few observations to derive a meaningful con�dence interval to backtest

the ES estimate.8 This is one frequently-cited reason for preferring VaR to ES.

8If � = 1%, there are by de�nition only 2.5 breaches of VaR in 250 trading days, the sample size stipulated
by the Basle II over which backtesting is carried out.
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4.1 Power Function Formula

Recently, Wong (2008) showed that it is possible to use the saddlepoint technique to overcome

the problem in backtesting ES. Speci�cally, a portfolio return R is distributed as standard

Gaussian, the p-value of sample ES statistics, calculated as average of VaR exceedances

(see Appendix A.1), can be approximated very accurately by the small sample asymptotic

technique.

Nevertheless, applying the saddlepoint backtest is a rather complicated exercise, since it

requires us to solve numerically for a saddle-point and then evaluate derivatives of higher-

order cumulants around the point. In this paper, we present a straightfoward way of deriving

critical values of the test distribution by evaluating the following power function:

��(n) = ��x �
�xp
n

�
z� +

a

(1 + 1000 � n=b)c

�
(1)

where n is the number of exceptions in the sample, z� is the standard normal �-quantile

(the chosen con�dence level), and ��x = 2:6652 and �2x = 0:09685 are respectively the

expectation and variance of ES0:01(R) under the null hypothesis. Consider the probability

calculated using the saddlepoint technique:

P
�
X < ����(n)

�
= �

where X is the random sample mean of (minus) ES and the critical value of the power

function, ���(n), is obtained by numerical methods. Then minimizing the sum of squared

di¤erences between ��(n) and ���(n) for n = 1; :::; 200 makes it possible to solve for the

coe¢ cients a; b and c. The resulting values are given in the top half of Table 3.

< Insert Table 3: Power function formula >

The associated critical values for the 5% tail are given in the bottom half of the table. The
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gap between the analytical and simulated critical values is highest for only two exceedances,

but even in this case, the gap is only 0.0002. It is half as great for n = 5; 10; 20. Beyond this

level, the gap is zero up to the fourth decimal place. Indeed, when n approaches in�nity,

�
p
n��1x (��(n) + �x) �! z�:

4.2 Risk Capital

This analysis also has implications for the appropriate multiplication factor,M; to be used in

computing required risk capital. Kerkhof and Melenberg (2004) suggested a new approach

to implementing rewards and punishment by proposing to calculate M based on statistical

backtesting of ES. Their proposal is that the multiplication factor should be proportional

to the amount by which the ES under the null needs to be increased to make it no longer

signi�cantly smaller than the sample ES. However, since their functional delta approach to

backtesting may be inaccurate for small samples, we derive a saddlepoint version of the

multiplication factor formula:9

M = min

�
3�max

�
1; 1 +

�xp
n�x

�
z � z� �

a

(1 + 1000n=b)c

��
; 4

�
; (2)

where if x is the sample mean of �ES, z = n��1x (x� �x) : Comparing (2) with equa-

tion (31) in Kerkhof and Melenberg (2004), two di¤erences are apparent: �rstly, the new

formulation depends on the number of exceptions, but not on sample size, and secondly,

the introduction of three additional parameters, a; b and c, makes this formula for M accu-

rate for any n > 0. Finally, we remark that for large n, equations (2) above and (31) in

Kerkhof and Melenberg (2004) converge to the same number.

9Proof of (2) is provided in Appendix A.3.
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4.3 Responsive Risk Management

As pointed out in Wong (2008), the fact that this approach to backtesting ES is so reliable

even with only one or two exceptions in the data sample means that this risk measure can

be used to monitor the impact of extreme events rapidly, allowing management to react

promptly to crises.

< Insert Table 4: Responsive Risk Management >

Table 4 above tabulates the results of applying the power function formula in backtesting

and risk capital determination for the portfolio return, R, when moneyness k = �5%. As our

aim is to illustrate the use of equation (1) for responsive risk management, in-sample VaRs are

estimated based on assumptions that R is distributed as iid normal and iid skewed Student,

which is found by Giot and Laurent (2003) to model well the US stock index returns.

Panel A gives the backtest results for the entire sample. As in Wong (2008) and Kerkhof

and Melenberg (2004), the portfolio returns in the iid skewed Student case are transformed

into standard normal before they are backtested. The idea is that, if R is fatter-tailed than

the presumed distribution, the transformed data will also have fatter-tails than a standard

normal. It can be seen that normality fails to match the fat-tails in the portfolio returns,

both in terms of frequency and size of exceedances.

Following the above backtest results, Panel B calculates the �rst ten associated critical

values and risk capital multiplication factors for the estimated VaRs, based on the standard

normal null hypothesis. For comparison, the multiplication factorm based on the Basle rules

is provided. When a loss �rst exceeds VaR, the power function formula �nds it signi�cant at

5% level and the associatedM adjusts to 3.19 accordingly. After less than a month, another

exceedance occurs, and the sample ES is found to be signi�cantly large at the 1% level so
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that M is now raised to 3.78. For all subsequent exceptions, ES backtest results remain

signi�cant at the 1% level and M is constant at the maximum value of 4. By contrast,

m based on the Basle rules, only starts to increase at the �fth exception, and reaches its

maximum at the tenth exception.

4.4 VaR, ES and Stress Testing

In fairness, it has to be conceded that VaR was never intended to be the sole guide to

risk management. Being a quantile measure, a one-day V aR0:01(R) tells investors the worst

possible outcome in 99% of trading days. As for the question of howmuch worse the outcomes

could be beyond the VaR boundary, it is left to the role of stress testing.

However, there is no standard way to carry out stress testing and no standard set of

scenarios to consider. As Linsmeier and Pearson (2000) note, �the process depends crucially

on the judgement and experience of the risk manager.� In this sense, stress testing could

be regarded as more like an art than a science: a risk manager needs to �nd a middle way

between the extremes of being too cautious on the one hand and too indi¤erent to risk on the

other. Excessive risk avoidance could mean no business ever being written because provision

has to be made for every conceivable extreme event; the opposite extreme might result in

no e¤ective risk reduction measures being taken after lots of pointless discussions about the

plausibility of particular scenarios.

These considerations are not meant to imply that stress testing is unhelpful. Rather, we

regard the analysis as a demonstration of the bene�t of being able to use ES backtesting

in a disciplined manner. In particular, since there is often no formal probability estimation

for stress scenarios, statistically backtesting the sizes of extreme losses provides information

which can be a useful complement to the usual VaR and stress testing analyses.
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5 Conclusions

VaR has a number of attractive features, the most obvious from a management point of view

being that it is easy to justify focussing on the maximum loss on a portfolio over a speci�ed

period with a given con�dence level. Moreover, it is easy to backtest a VaR model, as no

distribution is assumed.

However, given the complexity and widespread use of leverage in modern �nancial in-

vestments, it now becomes important to measure and manage the sizes of extreme losses in

a disciplined manner. In this regard, ES tells investors the expected value of the loss when

we observe an extreme outcome, and to that extent can be viewed as supplementing rather

than replacing VaR.

In this paper, we carry out a risk contribution analysis to demonstrate the importance

of identifying the source of extreme risks. Being a quantile measure, VaR could give a false

sense of security if there is excessive nonlinearity in the payo¤ structure. On the other hand,

ES measures the average size of losses beyond VaR and thus re�ects more realistically the

risk of rare but huge losses. We also show how the saddlepoint approximation method can

be used in a straightfoward manner to solve the problem commonly cited in the literature

of backtesting ES. Based on the saddlepoint approximation, a responsive risk management

practice involving dynamic adjusment of risk capital is illustrated.

A Appendix

A.1 Estimation of Risk Measures

Consider a random sample (R1; :::; RT ). Let R(i) be the order statistics such that R(i) �

R(i+1): Then VaR at con�dence level 1�� is estimated using order statistics as in Dowd (2001).

Speci�cally, if [T�] = n denotes the integral part of T� and r = T�� n; then
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dV aR = �(1� r)R(n) � rR(n+1):

The associated ES estimator is given by

cES = � 1
n

nX
i=1

R(i):

For the VaR-contribution, it is not easy to numerically estimate the conditional expec-

tation, E[�Rj � R = V aR]; as the condition �R = V aR hardly exists in practice. So we

consider a subset around V aR, (R([T��"]); :::; R([T�+"])) that conprise � " observations such

that as T tends to in�nity, � " approaches to in�nity but T�1� " diminishes to zero. Let Rj"

(1 � j � � ") denote such � " portfolio returns, and Rj"i (1 � i � n; 1 � j � � ") refers to the

associated returns of i-th asset. Then VaR-contribution can be numerically estimated as

dV aRCi = �!i
� "

�"X
j=1

Rj"i

.

For the ES-contribution of i-th asset, the numerical estimator is

dESCi = �!i
��

��X
j=1

Rj�i;

where if Rj� (1 � j � ��) refer to the �� portfolio losses that are larger than the portfolio

VaR (�R � V aR�(R)), Rj�i are the associated returns of the i-th asset.

For numerical analysis in Section 2, � " = �� � �T , where � = 0:01 and T = 2470:

A.2 Nonlinearity

Since p < � and L > V aR�(R), we can write the Stieltjes integral,
R �V aR
�1 dF (r) = �, as
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(1� p)
Z �V aR

�1
�(r)dr = �;

from which the VaR formula follows. For ES,

ES�(R) = E[�Rj �R > V aR]

=
�
R �V aR
�1 rdF (r)

P [�R > V aR]

= ��1
�
pL+ (1� p)

Z �V aR

�1
r�(r)dr

�
= ��1

�
pL+

(1� p) exp [�V aR2=2]p
2�

�
:

A.3 Derivation of (2)

Let Xi; i = 1; :::; n; refer to the n returns that breach VaR. The associated mean is denoted

by X with its realization by x: Under the null hypothesis, E[X] = �x. Let M be such that

the ES under the null hypothesis should be increased so that it is no longer signi�cantly

more negative than the sample ES:

P (X � �x < x�M�x) = P (X � �x < ���(n)� �x) = �

where � may be set at 0.05, the conventional signi�cance level used for hypothesis testing.

Substituting ��(n), using (1) and equating the arguments in the probability functions, we

have:

x�M�x =
�xp
n

�
z� +

a

(1 + 1000n=b)c

�
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Substituting x = �xn�1=2z + �x and rearranging the terms, the following expression is ob-

tained

M = 1 +
�xp
n�x

�
z � z� �

a

(1 + 1000n=b)c

�
.

Since the multiplication factor, M , ranges from 3 to 4, we have:

M = min

�
3�max

�
1; 1 +

�xp
n�x

�
z � z� �

a

(1 + 1000n=b)c

���
:
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Table 1. Basic statistics

Asset 1 Asset 2 Asset 3 Asset 4

Corporate Short put

S&P 500 Bond Treasury k = 0:05 k = 0:00 k = �0:05

Mean* 0.0089 -0.0014 0.0025 0.0110 0.0380 0.0035

Stdev 1.158 0.282 0.402 1.069 0.622 0.144

Skew -0.007 1.530 -0.227 -0.179 -1.114 -5.078

Kurtosis 5.520 65.284 4.929 4.713 7.389 70.185

Min -7.044 -2.563 -2.080 -6.230 -4.815 -2.561

Q1 -0.622 -0.079 -0.226 -0.591 -0.245 -0.001

Median 0.044 0.000 0.010 0.051 0.117 0.003

Q3 0.619 0.088 0.240 0.615 0.406 0.037

Max 5.574 5.199 2.048 4.010 2.142 0.684

*Note that the corporate bond and treasury returns are based on price indices
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Table 2. Risk contribution

Panel A: No leverage; !4 = 0.107

k 0.05 0.04 0.03 0.02 0.01 0.00 -0.01 -0.02 -0.03 -0.04 -0.05

V aR 0.856 0.854 0.849 0.853 0.847 0.836 0.830 0.793 0.737 0.656 0.573

ES 1.157 1.154 1.150 1.146 1.140 1.130 1.112 1.079 1.028 0.956 0.858

Mean (%) 0.236 0.317 0.426 0.559 0.687 0.762 0.744 0.642 0.503 0.365 0.244

Stdev 0.331 0.330 0.328 0.324 0.318 0.309 0.295 0.277 0.253 0.226 0.196

Skew 0.221 0.195 0.159 0.110 0.047 -0.032 -0.127 -0.242 -0.386 -0.571 -0.804

Kurtosis 11.999 11.940 11.909 11.952 12.141 12.578 13.374 14.635 16.489 19.132 22.807

Min -2.384 -2.382 -2.384 -2.391 -2.408 -2.434 -2.464 -2.484 -2.478 -2.427 -2.315

Panel B: Leverage; increasing !4

!4 0.107 0.112 0.119 0.132 0.152 0.184 0.233 0.307 0.414 0.570 0.795

V aR 0.856 0.857 0.859 0.872 0.882 0.893 0.925 0.936 0.941 0.931 0.930

ES 1.157 1.159 1.163 1.171 1.186 1.208 1.239 1.274 1.314 1.355 1.392

Mean (%) 0.236 0.318 0.431 0.571 0.715 0.815 0.829 0.758 0.643 0.517 0.396

Stdev 0.331 0.331 0.331 0.331 0.331 0.330 0.329 0.327 0.324 0.321 0.317

Skew 0.221 0.195 0.159 0.110 0.047 -0.032 -0.127 -0.242 -0.386 -0.571 -0.804

Kurtosis 11.999 11.940 11.909 11.952 12.141 12.578 13.374 14.635 16.489 19.132 22.807

Min -2.384 -2.393 -2.410 -2.445 -2.505 -2.602 -2.744 -2.932 -3.165 -3.441 -3.755

V aRC1 0.407 0.406 0.405 0.385 0.409 0.428 0.417 0.425 0.354 0.305 0.278

V aRC2 0.270 0.269 0.268 0.290 0.252 0.237 0.262 0.250 0.322 0.424 0.492

V aRC3 0.038 0.038 0.038 0.036 0.020 -0.025 -0.052 -0.081 -0.022 -0.018 -0.018

V aRC4 0.284 0.286 0.289 0.289 0.320 0.360 0.373 0.406 0.346 0.289 0.248

ESC1 0.322 0.322 0.321 0.327 0.335 0.340 0.338 0.336 0.333 0.323 0.312

ESC2 0.466 0.465 0.463 0.456 0.437 0.425 0.407 0.393 0.359 0.348 0.338

ESC3 -0.009 -0.009 -0.009 -0.023 -0.030 -0.047 -0.051 -0.061 -0.056 -0.054 -0.051

ESC4 0.221 0.223 0.226 0.240 0.258 0.283 0.306 0.332 0.363 0.383 0.401
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Table 3. Power function formula

Panel A: Coe¢ cients of power function

� level

0.005 0.01 0.025 0.05

z� -2.5758 -2.3263 -1.9600 -1.6449

a -15.7925 -14.4907 -13.1094 -12.6446

b 6.2965 4.6150 2.2280 0.6994

c 0.4817 0.4832 0.4828 0.4758

� 0.0003 0.0002 0.0003 0.0002

Panel B: Examples of critical values (� = 0:05)

n ���(n) ��(n)

1 -3.3012 -3.3012

2 -3.0901 -3.0903

5 -2.9200 -2.9199

10 -2.8403 -2.8402

20 -2.7864 -2.7863

50 -2.7403 -2.7403

100 -2.7178 -2.7178

200 -2.7021 -2.7021

� is to the maximum absolute error between ���(n) and ��(n):
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Table 4. Responsive risk management

Panel A: Backtesting

Null hypothesis n a p cES �0:05(n) �0:01(n)

Normal 48 0.0194 0.000 3.492 2.742 2.777

Skewed Student 27 0.0109 0.647 2.668 2.769 2.818

Panel B: Multiplication factor

Date n m M cES �0:05(n) �0:01(n)

19980804 1 3.00 3.19 3.472 3.301 3.724

19980827 2 3.00 3.78 3.783 3.090 3.347

19980828 3 3.00 4.00 4.019 3.003 3.197

19980831 4 3.00 4.00 5.975 2.953 3.113

19981007 5 3.40 4.00 5.269 2.920 3.058

19981008 6 3.50 4.00 4.983 2.896 3.018

19990212 7 3.65 4.00 4.622 2.877 2.988

19990323 8 3.75 4.00 4.342 2.862 2.965

19990514 9 3.85 4.00 4.156 2.850 2.945

19990527 10 4.00 4.00 3.997 2.840 2.929

a and p in Panel A are failure rate and p-value respectively.
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Figure 1: VaR contribution when leverage is applied
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Figure 2: ES contribution when leverage is applied
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