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Abstract 
This paper analyses the data generating process of the convertible arbitrage 
hedge fund strategy.  Within a nonlinear framework, we allow for alternate 
regimes of convertible arbitrage risk using smooth transition autoregressive 
(STAR) models.  In one regime the convertible arbitrage strategy exhibits 
relatively large exposure to default and term structure risk factors and negative 
alpha.  In the alternate regime the strategy exhibits relatively low exposure to 
market risk factors and positive alpha.  Significantly, over the sample period the 
strategy generally exists in the low risk/high alpha regime.  We suggest that 
evidence reported in this paper accounts for abnormal returns reported for the 
strategy in previous studies. 
 
Keywords: smooth transition, hedge fund, convertible arbitrage 
JEL classification: G11, G12, C32 

 
 

1. Introduction 

Academic literature on hedge fund performance has generally focused on linearly modelling the 

relationship between the returns of hedge funds and the asset markets and contingent claims on 

those assets in which hedge funds operate.  Recently, several studies model the returns of these 

funds using techniques which are not restricted by assumptions of normality. 
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In this paper we are interested in investigating whether an alternative non-linear model 

specification increases efficiency in the modelling of convertible arbitrage hedge fund returns.  In 

particular we focus on the smooth transition autoregressive (STAR) family of models which have 

the advantage, over alternative non-linear regime switching specifications when modelling 

financial data, of allowing a smooth transition between regimes.1 

Many studies of hedge funds have documented non-linearity in their returns (See for example, 

Liang (1999), Agarwal and Naik (2000), Brooks and Kat (2001), Kat and Lu (2002) and Fung 

and Hsieh (1997, 2000)).  One avenue of research has modelled this non-linearity in a linear asset 

pricing framework using non-Gaussian risk factors. Fung and Hsieh (2001, 2002) present 

evidence of hedge fund strategy payoffs sharing characteristics with lookback straddles, and 

Mitchell and Pulvino (2001) document the returns from a merger arbitrage portfolio exhibiting 

similar characteristics to a short position in a stock index put option.  Using option payoffs as risk 

factors, Agarwal and Naik (2004) demonstrate the non-linear relationship between hedge fund 

returns and risk factors.  Modelling the returns of convertible arbitrage hedge funds Hutchinson 

and Gallagher (2007) and Agarwal, Fung, Loon and Naik (2007) construct factor portfolios 

mimicking convertible arbitrage investments. 

In addition to the linear factor model literature several studies utilize models whose functional 

specification, rather than factor specification, captures the non-normal characteristics of hedge 

funds.  Rather than specifying factors with non-normal distributions, these studies relax the 

assumption of a linear relationship between the risk factor and hedge fund returns.  Kat and 

Miffre (2005) employ a conditional model of hedge fund returns which allows the risk 

coefficients and alpha to vary.  Kazemi and Schneeweis (2003) also attempt to explicitly address 

the dynamics in hedge fund trading strategies by specifying conditional models of hedge fund 

performance.  Kazemi and Schneeweis (2003) employ the stochastic discount factor model which 

                                                 
1 In financial markets with many participants operating independently and at different time horizons, 
movements in asset prices are likely to be smooth. 



 3

has previously been employed in the mutual fund literature.  Alternately, Amin and Kat (2003), 

imposing zero restrictions on the distribution of the funds returns, evaluate hedge funds from a 

contingent claims perspective.   

STAR models were developed by Teräsvirsta and Anderson (1992) for modelling non-linearities 

in the business cycle and offer several advantages over a Hamilton (1989) Markov switching 

model.  STAR models incorporate at least two alternate risk regimes, allowing for a smooth 

transition from one risk regime to another.  When estimating the STAR model no ex ante 

knowledge of the threshold variable is required.  These models have been specified extensively to 

model economic time series (see for example Sarantis (1999), Skalin and Terasvirta (1999), Ocal 

and Osborn (2000) and Holmes and Maghrebi (2004)) and stock returns (see for example 

McMillan (2001), Bradley and Jansen (2004) and Bredin and Hyde (2007)).   

Overall, existing academic studies find that convertible arbitrage hedge funds generate significant 

abnormal returns.  In studies of general hedge fund performance, Capocci and Hübner (2004) and 

Fung and Hsieh (2002) provide some evidence of convertible arbitrage performance.  Capocci 

and Hübner (2004) specify a linear factor model to model the returns of several hedge fund 

strategies and estimate that convertible arbitrage hedge funds earn an abnormal return of 0.4% per 

month.  Fung and Hsieh (2002) estimate the convertible arbitrage hedge fund index generates 

alpha of 0.7% per month.  Focusing exclusively on convertible arbitrage hedge funds Hutchinson 

and Gallagher (2007) find evidence of individual fund abnormal performance but no abnormal 

returns in the hedge fund indices.  Agarwal, Fung, Loon and Naik (2007) document positive 

abnormal returns which they account for with new issue convertible bond under pricing data. 

These mixed findings suggest that either financial markets exhibit significant inefficiency in the 

pricing of convertible bonds, or prior studies have failed to specify a functional model which 

correctly explains convertible arbitrage risk. Financial theory suggests that the relationship 

between convertible arbitrage returns and risk factors is non-linear.  Being long a convertible 

bond and short an underlying stock, funds are hedged against equity market risk but are left 
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exposed to a degree of downside default and term structure risk.  When the convertible bond is 

above a certain threshold it acts more like equity than bond.  However, when the convertible bond 

falls in value it acts more like bond than equity.  Effectively, the convertible arbitrageur is short a 

credit put option.2   Highlighting this non-linearity Agarwal and Naik (2004) provide evidence 

that convertible arbitrage hedge fund indices’ returns are positively related to the payoff from a 

short equity index option. 

In this paper evidence is presented of a non-linear relationship between convertible arbitrage 

hedge fund returns and default and term structure risk factors.  This non-linear relationship is 

modelled using logistic smooth transition autoregressive (LSTAR) models.  We also provide 

evidence that the specification of these models provides increases in efficiency over an alternate 

linear specification.  Nine convertible arbitrage hedge fund series are modelled, including five 

hedge fund indices and four portfolios made up of individual convertible arbitrage hedge funds.  

To ensure the robustness of these results the model is also specified for a simulated convertible 

arbitrage portfolio and again evidence is presented supporting the hypothesis of non-linearity in 

the relationship between the returns of convertible arbitrage and risk factors. 

The remainder of this paper is organised as follows.  The next section contains details of the data.  

Section 3 provides a review of the smooth transition autoregressive models.  Section 4 provides 

details of the estimation results.  Section 5 concludes. 

 

2. Data 

In this section of the paper we present details of the convertible arbitrage series and explanatory 

risk factors.  To model the convertible arbitrage hedge fund strategy we specify five indices of 

convertible arbitrage hedge funds, four portfolios made up of convertible arbitrage hedge funds 

                                                 
2 Some convertible arbitrage funds hold credit default swaps to hedge credit risk.  However, Hutchinson 
and Gallagher (2007) document significant exposure amongst convertible arbitrage hedge funds to default 
and term structure risk factors. 
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from the HFR database and a simulated convertible arbitrage portfolio.3  All of the series have 

different start dates.  The sample period runs from the start of each series to December 2002.4 The 

indices specified are the CSFB Tremont Convertible Arbitrage Index, the HFRI Convertible 

Arbitrage Index, the Van Hedge Convertible Arbitrage Index, the Barclay Group Convertible 

Arbitrage Index and the CISDM Convertible Arbitrage Index.   The CSFB Tremont Convertible 

Arbitrage Index is an asset weighted index (rebalanced quarterly) of convertible arbitrage hedge 

funds beginning in 1994, the CISDM Convertible Arbitrage Index represents the median fund 

performance, whereas the HFRI, Van Hedge and Barclay Group Convertible Arbitrage Indices 

are all equally weighted indices of fund performance. 

The four portfolios are: HFR EQL, an equally weighted portfolio of convertible arbitrage hedge 

funds; HFR LRG, an equally weighted portfolio made up of the largest funds, ranked by month t-

1 assets under management; HFR MID, an equally weighted portfolio made up of the mid ranking 

funds, ranked by month t-1 assets under management; and, HFR SML, an equally weighted 

portfolio made up of the smallest funds, ranked by month t-1 assets under management. 

Finally CBARB, the simulated portfolio is an equally weighted portfolio constructed of long 

positions in convertible bonds combined with delta neutral hedged short positions in the 

underlying stocks.  For details on the construction and statistical characteristics of this portfolio 

see Hutchinson and Gallagher (2006, 2007).  

Descriptive statistics and cross correlations for the ten convertible arbitrage excess return series 

are presented in Table 1 and Table 2.5  Of the indices the Van Hedge index has the largest mean 

return, 0.83, and the CSFB Tremont index has the largest variance, 1.92.  The portfolios formed 

from the HFR database have similar mean returns but HFR SML, made up of smaller hedge funds 

has the largest variance, more than twice the magnitude of the other size portfolios.  Finally all of 

the series exhibit positive kurtosis and, with the exception of the Barclay Group index, which 

                                                 
3 For a review of the different hedge fund indices see Goltz, Martellini and Vaissié (2007) 
4 The number of observations for each series varies and is reported in Table 1. 
5 The one month T-bill rate is specified for the risk free return. 
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does not cover October 1998, negative skewness.  The cumulative returns of the ten series are 

reported in Figure 1. 

The explanatory variables specified in this study are RMRF, SMB, HML, DEF and TERM.  

Hutchinson and Gallagher (2006) provide evidence that these five equity and bond market factors 

drive the convertible arbitrage data generating process.  RMRF, SMB and HML are Fama and 

French (1992, 1993) market, size and book-to-market factors, respectively.6  DEF and TERM 

represent default and term structure risk factors (Chen, Roll and Ross (1986)). DEFt is the 

difference between the overall return on a market portfolio of long-term corporate bonds minus 

the long term government bond return at month t.  TERMt is the factor proxy for unexpected 

changes in interest rates.  It is constructed as the difference between monthly long term 

government bond return and the short term government bond return.  Descriptive statistics and 

cross correlations of the risk factors are presented in Table 3.  All of the mean returns are 

positive.  Jacque and Bera (1987) statistics indicate that four of the five risk factors exhibit non-

normality.  DEF and TERM exhibit autocorrelation.   

In the next section of the paper we discuss the STAR methodology specified in this study to 

model convertible arbitrage returns. 

 

3. Methodology 

This section of the paper provides a review of threshold model methodology focusing on the 

smooth transition autoregressive (STAR) model first proposed by Chan and Tong (1986) and 

extended by Teräsvirta and Anderson (1992) for modelling non-linearity in the business cycle.  

STAR models are specified in this study for three principle reasons.  (1) They incorporate two 

alternate regimes, corresponding with the theoretical relationship between convertible arbitrage 

returns and risk factors.  One regime where the portfolio is more exposed to default and term 

structure risk and a second regime where the portfolio is less exposed to default and term 
                                                 
6 The data on RMRF, SMB and HML are downloaded from Kenneth French’s website. 
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structure risk and more exposed to the convertible arbitrage risk factor.  (2) They incorporate a 

smooth transition from one risk regime to another.  In financial markets with many participants 

operating independently and at different time horizons, movements in asset prices and risk 

weightings are likely to be smooth rather than sharp.  (3) When estimating the STAR model no ex 

ante knowledge of the threshold variable level, c, is required.  This threshold level is estimated 

simultaneously with the coefficients of the model.  The only ex ante expectation of the level of 

the threshold is that it lies between the minimum and maximum of the threshold variable.   

In this study we specify the one period lag of the convertible arbitrage series return as the 

threshold variable.  The convertible arbitrage series proxy aggregate hedged convertible bonds 

held by arbitrageurs.  If the series generates negative returns then aggregate hedged convertible 

bonds held by arbitrageurs have fallen in value.  This fall in value is caused either by a decrease 

in the value of the short stock position in excess of the increase in the value of the long corporate 

bond position or, more likely, a decrease in the value of the long convertible bond position in 

excess of the increase in the value of the short stock position.  When the one period lag of the 

convertible arbitrage benchmark return is below the threshold level, convertible bond prices and 

deltas have decreased.  As convertible bond prices fall, we expect the arbitrageur’s portfolio to be 

more exposed to default and term structure risk.  When the one period lag of the convertible 

arbitrage benchmark return is above the threshold level, convertible bond prices and deltas 

increase and we expect the portfolio to exhibit less fixed income characteristics, with relatively 

smaller coefficients on the default and term structure risk factors. 

Consider the following NLAR model. 

 

ttttt ezfxxy ++= )('' βα     (1) 
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Where α’ = (α0, …, αm), β’ = (β0, …, βm), xt = (yt, …, yt-p ; x1t,…, xkt) and the variable zt is 

the transition variable.  If f ( ) is a smooth continuous function the autoregressive coefficient (α1 

+ β1) will change smoothly along with the value of yt-1.  This type of model is known as a smooth 

transition autoregressive (STAR) model.  The two particularly useful forms of the STAR model 

that allow for a varying degree of autoregressive decay are the LSTAR (Logistic-STAR) and 

ESTAR (Exponential-STAR) models. 

Choosing 1( ) [1 exp( ( ))]t tf z z cγ −= + − −  yields the logistic STAR (LSTAR) model where γ is 

the smoothness parameter (i.e. the slope of the transition function) and c is the threshold.  In the 

limit as γ approaches zero or infinity, the LSTAR model becomes a linear model since the value 

of f(zt) is constant.  For intermediate values of γ, the degree of decay depends upon the value of zt.  

As zt approaches -∞, θ approaches 0 and the behaviour of yt is given by ttt exy += 'α . As zt 

approaches +∞, θ approaches 1 and the behaviour of yt is given by tt ex ++ )''( βα . 

Choosing 2( ) 1 exp( ( ) )t tf z z cγ= − − −  yields the exponential STAR (ESTAR) model.  For the 

ESTAR model, as γ approaches infinity or zero the model becomes a linear model as f(zt) 

becomes constant.  Otherwise the model displays non-linear behaviour.  It is important to note 

that the coefficients for the ESTAR model are symmetric around zt = c.  As zt approaches c, f(zt) 

approaches 0 and the behaviour of yt is given by ttt exy += 'α .  As zt moves further from c, θ 

approaches 1 and the behaviour of yt is given by tt ex ++ )''( βα . 

The estimation of STAR models consists of three stages (Granger and Teräsvirta (1993)): 

 

(a) Specification of a linear model. 

The initial step requires the specification of the linear model (4). 

 

yt = α + β ’xt + εt     (4) 



 9

 

Where yt is the excess return on the hedge fund index, and xt is a matrix of convertible 

arbitrage risk factors. 

 

(b) Testing linearity 

The second step involves testing linearity against STAR models using the linear model specified 

in (a) as the null.  To carry out this test the auxiliary regression is estimated: 

2 3
0 1 2 3' ' ' 't t t t t t t tu x x z x z x zβ β β β= + + +     (5) 

Where the values of ut are the residuals of the linear model specified in the first step and zt is the 

transition variable.  The null hypothesis of linearity is H0 : β1 = β2 = β3 = 0.7   

 

(c) Choosing between LSTAR and ESTAR 

If linearity is rejected the selection between LSTAR and ESTAR models is based on the 

following series of nested F tests. 

 

H3: β3 = 0      (6) 

H2: β2 = 0| β3 = 0     (7) 

H1: β1 = 0| β2  = β3= 0     (8) 

 

Accepting (6) and rejecting (7) implies selecting an ESTAR model.  Accepting both (6) and (7) 

and rejecting (8) leads to an LSTAR model as well as a rejection of (6).  Granger and Teräsvirta 

(1993) argue that strict application of this sequence of tests may lead to incorrect conclusions and 

suggest the computation of the P-values of the F-tests of (6) to (8) and make the choice of the 

STAR model on the basis of the lowest P-value.   

                                                 
7 Equation (5) can also be used to select the transition variable zt.  We conducted this test for each candidate 
for the transition variable drawing from the matrix of convertible arbitrage risk factors.  As it leads to the 
smallest P-value for each of the series, we fail to reject the lag of the hedge fund series return as the choice 
of zt.  These results are available from the authors on request. 
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We estimate the STAR models using non-linear least squares in the RATS programme.  RATS 

specifies the Marquardt variation of the Gauss-Newton to solve the non-linear least squares 

regression.  In the next section of the paper we discuss the empirical results from our application 

of the STAR methodology to the convertible arbitrage series. 

 

4. Empirical results  

In this section of the paper we present the empirical results from estimating the STAR models for 

the ten convertible arbitrage series.  The remainder of this section is divided into three 

subsections.  Subsection 4.1 presents results from estimation of the linear model; Subsection 4.2 

presents the linearity test results; and finally, Subsection 4.3 presents results from estimating the 

STAR models. 

 

4.1. Linear model results 

We begin with the results from estimating (9) for each of the convertible arbitrage hedge fund 

series. 

 

yt = δ0 + δ1YLAGt + δ2RMRFt + δ3SMBt + δ4HMLt + δ5DEFt + δ6TERMt + ε  (9) 

 

Where YLAGt is the one period lag of the hedge fund series return at time t.  Results from 

estimating this model are presented in Table 4.  Looking first at the equity market factors, RMRF, 

the excess return on the market portfolio is significantly positively related to five of the ten 

convertible arbitrage series.  SMB, the size related factor is significantly positive for all of the 

funds series.  This suggests that the strategy generates returns from the smaller issuers.  HML, the 

book-to-market equity factor is significant for only two series, HFR EQL and CBARB.  The two 

bond market factors, DEF and TERM, are significantly positive for nine of the ten hedge fund 

series.  HFR SML is the only series with no exposure to these factors.  Finally, YLAG is 
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significant for eight of the ten convertible arbitrage series.  Seven of the hedge fund series exhibit 

significantly positive alphas, ranging from 15 to 41 basis points per month.  This finding of 

abnormal performance for the convertible arbitrage strategy from a linear specification is 

consistent with prior studies. 

The explanatory power of the linear model (adjusted R2) ranges from 8% for HFR SML to 59% 

for the CISDM series.  Jacque and Bera statistics indicate seven of the ten series residuals are 

significantly non-normal, and we fail to reject ARCH effects for all of the estimated regression 

residuals. 

 

4.2 Linearity tests 

The linearity tests for each of the series are displayed in Table 5.  To ensure that the most 

appropriate lag of the convertible arbitrage series is specified as the transition variable we begin 

by setting zt = yt-d where d is the delay parameter.  We then conduct linearity tests for values of 

the delay parameter over the range 1 ≤ d ≤ 8.  P-values for the linearity test are calculated and 

displayed in row one of each panel in Table 5.  The delay parameter d is chosen by the lowest P-

value.  The tests for the choice between ESTAR and LSTAR for each series are shown in rows 2 

to 4 of each Panel in Table 5. 

Linearity tests of the HFRI index are reported in Panel A of Table 5.  Linearity is rejected at 

levels of d = 1, 2, 3 and 8 but the lowest P-value is for d = 1 so, consistent with expectations, yt-1, 

the one period lag of the hedge fund series return, is chosen as the transition variable zt.  At d = 1, 

the only significant P-value is for H1 indicating an LSTAR model.   

For each of the other convertible arbitrage series we find evidence to reject linearity at multiple 

lags.  Consistent with our finding for HFRI, the lowest P-value for each series is for d = 1.  

Choosing between ESTAR and LSTAR models for each series is not as straightforward.  CSFB, 

VANHEDGE, BRCLYGRP, HFL LRG and HFR MID are all LSTAR. For CISDM and HFR 

EQL at d = 1, the lowest P-value is for H1, again indicating an LSTAR model.  Finally, as the 
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result for CBARB is less conclusive we assume it follows an LSTAR specification consistent 

with the other nine convertible arbitrage series.  In the next subsection we present results from 

estimation of the LSTAR models. 

 

4.3 Smooth transition autoregressive model 

The LSTAR model parameter estimates together with the diagnostic statistics are reported in 

Table 6.  Figure 2 displays the transition functions plotted against time and the transition variable. 

We identify two regimes which we term the ‘negative alpha’ regime and the ‘positive alpha 

regime’.  The transition between the two regimes is relatively smooth (3.92 < γ < 9.14).  The 

level of the threshold lies between +0.33 for the HFRI series and -1.64 for the CBARB series. 

Looking at Fig. 2 there are several distinct periods when the convertible arbitrage series move 

into the negative alpha regime, 1990 to 1992; 1994; 1998; and, 2001 to 2002.  These coincide 

with severe financial events which are likely to have negatively affected credit spreads.  1990 to 

1992 coincides with the collapse of the Exchange Rate Mechanism (ERM) in the Eurobloc; 1994 

coincides with the Mexican Peso crisis; 1998 coincides with the Asian and Long Term Capital 

Management crises; and finally, 2001 to 2002 coincides with the ending of the dotcom bubble 

and the Argentina financial crisis. 

Examining the coefficient estimates in Table 6, with the exception of HFR SML which has no 

exposure to these risk factors, coefficients on DEF and TERM decrease markedly as the series 

switches from the negative alpha regime to the positive alpha regime.  There is no clear pattern 

for the remaining risk factors.  The equity market factors are not significant in either regime for 

four of the series (HFRI, VanHedge, CISDM and HFR EQL) and only one coefficient is 

significant in each state for three series (BRCLYGRP, HFR LRG and CBARB).  HFR MID and 

HFR SML have large exposure to the three equity market risk factors, RMRF, SMB and HML in 

the negative alpha regime and this exposure decreases markedly in the positive alpha regime.  
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Finally, for the CSFB series the equity market factors show no clear pattern, with RMRF and 

HML coefficients increasing and the SMB coefficient decreasing in the positive alpha regime. 

The specification of the LSTAR models improves efficiency over the linear specification for all 

of the convertible arbitrage series with adjusted R2 range from 45% to 71%.  There is also a 

reduction in AIC and SBC for all of the series.  ρ* the ratio of residual standard deviations of the 

LSTAR and linear models demonstrates the efficiency gain from the LSTAR specification.8  This 

ratio ranges from 0.54 for the HFR SML series to 0.88 for the CBARB and VANHEDGE series.9  

For six of the series we can now reject the presence of ARCH effects in the residuals, although 

there remains evidence of non-normality in seven of the series. 

Consistent with theoretical expectations, the results for all of the convertible arbitrage series 

provide evidence to support the existence of a non-linear relationship between convertible 

arbitrage returns and explanatory risk factors.  We identify two alternate risk regimes for the 

strategy; a negative alpha regime; and, a positive alpha regime. 

In the negative alpha regime, with zt < c (i.e. prior month convertible arbitrage returns are below 

the threshold level) the convertible arbitrage series have increased risk coefficients and negative 

alpha.  In this regime the portfolio generally exhibits increased exposure to fixed income risks.  

This regime also appears to coincide with incidences of market stress, with a corresponding 

decrease in liquidity, such as the 1994 Peso crisis and the 1998 Asian currency crisis. 

In the positive alpha regime, with zt > c (i.e. prior month convertible arbitrage returns are above 

the threshold level) the default and term structure risk coefficients generally decrease and the 

strategy exhibits positive alpha.  In this regime the portfolio exhibits less fixed income risk 

characteristics and is characterised by relatively benign financial markets. 

                                                 
8 ρ* the ratio of the residual standard deviations is calculated as σnl/σlin, where σnl is the LSTAR estimated 
residual standard deviation and σlin is the residual standard deviation from the estimated linear model.  The 
smaller the ρ* the greater the efficiency gain. 
9 The smaller the ρ* the greater the efficiency gain. 
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The presence of these two risk regimes has important implications for investors in convertible 

arbitrage hedge funds.  Though these funds have historically offered high returns with relatively 

low standard deviation and exposure to market risk factors, this appears due to the favourable 

market conditions since 1990.  The evidence presented in this paper indicates that in future 

periods of market stress the strategy will become significantly exposed to fixed income risk 

factors, and, more importantly, under-perform a passive investment in these factors. 

 

5. Conclusions 

The tests conducted in this paper have rejected linearity for the convertible arbitrage hedge fund 

series.  These hedge fund series are classified as logistic smooth transition autoregressive 

(LSTAR) models.  The estimated LSTAR models provide a satisfactory description of the non-

linearity found in convertible arbitrage hedge fund returns and have superior explanatory power 

relative to linear models.  For all of the hedge fund series the estimated LSTAR model improves 

efficiency relative to the linear alternative. 

The estimates of the transition parameter indicate that the speed of transition is relatively slow 

from one regime to another but the factor loadings become relatively large, and alphas become 

negative, as previous month’s hedge fund returns move below the threshold level.  Historically 

the switch into the negative alpha regime coincides with several severe financial crises.   

We make two key contributions to the understanding of convertible arbitrage and hedge fund risk 

and returns in this paper.  We identify two risk regimes and we also identify market conditions 

where arbitrageurs under-perform. 

Previous research has identified only one risk regime for convertible arbitrage.  The evidence 

presented here supports the existence of two alternate risk regimes, a negative alpha regime, with 

higher default and term structure risk when month t-1 returns are below a threshold level, and a 

positive alpha regime, with lower default and term structure risk when month t-1 returns are 

above a threshold level.   
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Prior research has also documented the strategy generating either significantly positive alpha or 

alpha insignificant from zero.  Our finding of negative alpha in the higher risk regime is 

important for investors in convertible arbitrage hedge funds.  While convertible arbitrageurs 

outperform a passive investment in risk factors in relatively benign financial markets, when 

arbitrageurs are more exposed to default and term structure risk, they can under-perform relative 

to a passive investment in the risk factors. 
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Table 1 

Convertible arbitrage series summary statistics  
 
This table reports summary statistics for the monthly convertible arbitrage excess return series 
specified in this analysis. HFRI is the HFR Convertible Arbitrage Index of hedge funds, CSFB is 
the CSFB Tremont Convertible Arbitrage Index of hedge funds, VANHEDGE is the VanHedge 
Convertible Arbitrage Index of hedge funds, BRCLY GRP is the Barclay Group Convertible 
Arbitrage Index of hedge funds and CISDM is the CISDM Convertible Arbitrage Index of hedge 
funds.  HFR EQL is an equally weighted portfolio of convertible arbitrage hedge funds from the 
HFR database, HFR LRG, HFR MID & HFR SML are equal weighted portfolios of large, 
medium and small size (assets under management) convertible arbitrage hedge funds from the 
HFR database.  CBARB is a simulated convertible arbitrage portfolio.  N is the number of 
observations.  JB Stat is the Jacque-Bera normality test statistic.  Q-Stat is the Ljung-Box 
autocorrelation test Q Statistic for twelve lags of each series.  ***, ** and * indicate significance 
at the 1%, 5% and 10% levels respectively. 

 
 N Mean Variance Skewness Kurtosis JB 

Stat 
Q Stat 

HFRI 156 0.55 0.98 -1.37 3.12 112.32*** 99.99*** 
CSFB 108 0.45 1.92 -1.69 4.34 136.07*** 59.84*** 
VANHEDGE 96 0.83 0.78 -0.63 2.14 24.70*** 30.25*** 
BRCLY GRP 48 0.79 0.81 0.13 1.47 4.43 18.78* 
CISDM 131 0.65 0.45 -1.14 4.03 117.78*** 54.11*** 
HFR EQL 156 0.60 0.98 -0.60 0.45 10.79*** 76.87*** 
HFR LRG 129 0.54 1.11 -1.27 2.96 81.95*** 46.96*** 
HFR MID 129 0.59 0.99 -1.44 6.19 255.93*** 40.75*** 
HFR SML 129 0.69 2.46 -0.62 5.20 157.08*** 30.42*** 
CBARB 156 0.33 3.10 -1.36 9.00 573.96*** 62.37*** 
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Table 2 
Convertible arbitrage series correlation matrix 

 
This table reports linear correlation coefficients for the monthly convertible arbitrage excess 
return series in this analysis. HFRI is the HFR Convertible Arbitrage Index of hedge funds, CSFB 
is the CSFB Tremont Convertible Arbitrage Index of hedge funds, VANHEDGE is the VanHedge 
Convertible Arbitrage Index of hedge funds, BRCLY GRP is the Barclay Group Convertible 
Arbitrage Index of hedge funds and CISDM is the CISDM Convertible Arbitrage Index of hedge 
funds.  HFR EQL is an equally weighted portfolio of convertible arbitrage hedge funds from the 
HFR database, HFR LRG, HFR MID & HFR SML are equal weighted portfolios of large, 
medium and small size (assets under management) convertible arbitrage hedge funds from the 
HFR database.  CBARB is a simulated convertible arbitrage portfolio.  
 

 HFRI CSFB VAN 
HEDGE 

BRCLY 
GRP 

CISDM HFR 
EQL 

HFR 
LRG 

HFR 
MID 

HFR 
SML 

CBARB

HFRI 
 

1.00 0.76 0.94 0.95 0.41 0.92 0.92 0.90 0.74 0.53 

CSFB 
 

 1.00 0.74 0.73 0.43 0.76 0.82 0.73 0.57 0.33 

VAN 
HEDGE 

  1.00 0.97 0.37 0.91 0.90 0.87 0.76 0.55 

BRCLY 
GRP 

   1.00 0.38 0.95 0.94 0.91 0.78 0.59 

CISDM 
 

    1.00 0.33 0.48 0.37 0.10 0.26 

HFR 
EQL 

     1.00 0.94 0.94 0.89 0.54 

HFR 
LRG 

      1.00 0.88 0.71 0.54 

HFR 
MID 

       1.00 0.75 0.55 

HFR 
SML 

        1.00 0.41 

CBARB 
 

         1.00 
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Table 3 
Risk factor summary statistics and correlation matrix 

 
This table reports summary statistics and linear correlation coefficients for monthly financial 
variables.  Panel A reports the summary statistics, while Panel B reports linear correlations.  
RMRF, SMB and HML are factors representing market, size and book-to-market risk premia 
(Fama and French, 1992).  DEF and TERM are risk factors for default and term structure risk 
(Chen, Roll and Ross, 1986). JB Stat is the Jacque-Bera normality test statistic.  Q-Stat is the 
Ljung-Box autocorrelation test Q Statistic for twelve lags of each series.  ***, ** and * indicate 
significance at the 1%, 5% and 10% levels respectively. 

 
Panel A: Summary statistics 
 Mean Variance Skewness Kurtosis JB Stat Q Stat 
RMRF 0.49 20.39 -0.61 0.57 11.66*** 21.67 
SMB 0.15 12.72 0.45 1.72 24.49*** 22.95 
HML 0.10 18.03 -0.64 5.58 212.90*** 23.96 
DEF 0.54 9.39 -0.38 2.59 47.20*** 53.32*** 
TERM 0.11 5.82 -0.36 0.22 3.65 37.93** 
       
       
Panel B: Correlation matrix     
 RMRF SMB HML DEF TERM  
RMRF 1.00 0.19 -0.34 0.35 0.09  
SMB  1.00 -0.37 0.36 -0.16  
HML   1.00 0.06 -0.06  
DEF    1.00 -0.68  
TERM     1.00  
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Table 4 
Linear AR(1) Model 

 This table reports the OLS estimation of the linear first order autoregressive model.  YLAG is the one period lag of the dependent variable.  ***, 
** and * indicate coefficient significance at the 1%, 5% and 10% levels respectively.  σ is the residual standard deviation, Adj. R2 is the adjusted 
R2.   JB is the Jacque-Bera test for normality and ARCH(4) is the LM test up to lag 4.  JB and ARCH test results are P-Values.  AIC and SBC are 
the Akraike Information Criterion and the Schwartz Bayesian Criterion respectively. 

Variable HFRI CSFB VANHEDGE BRCLY GRP CISDM HFR EQL HFR LRG HFR MID HFR SML CBARB 
δ0 0.15** 0.09 0.32*** 0.41*** 0.23*** 0.29*** 0.14 0.31*** 0.46** 0.15 
δYLAG 0.52*** 0.61*** 0.51*** 0.42*** 0.51*** 0.35*** 0.52*** 0.32*** 0.22 0.09 
δRMRF 0.02* -0.01 0.02 0.03* 0.04*** 0.06*** -0.01 0.02 0.03 0.14*** 
δSMB 0.04** 0.05* 0.05** 0.06* 0.04*** 0.07*** 0.04* 0.06*** 0.07** 0.08*** 
δHML 0.00 0.00 0.00 0.03 0.01 0.03* 0.02 0.01 0.01 0.06*** 
δDEF 0.16*** 0.26** 0.16*** 0.10*** 0.08*** 0.08** 0.22*** 0.10* 0.07 0.17*** 
δTERM 0.20*** 0.28*** 0.19*** 0.15*** 0.12*** 0.16*** 0.23*** 0.18*** 0.09 0.24*** 
           
Diagnostics          
σ 0.20 0.46 0.18 0.22 0.08 0.26 0.30 0.34 1.09 0.68 
Adj. R2 0.55 0.49 0.51 0.37 0.59 0.44 0.45 0.25 0.08 0.41 
JB 0.00 0.00 0.02 0.75 0.00 0.12 0.12 0.00 0.00 0.05 
ARCH(4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
AIC 653.80 504.28 348.98 155.46 418.50 691.32 567.16 600.78 754.10 841.50 
SBC 675.10 522.99 366.85 168.41 438.63 712.63 587.13 620.91 774.23 862.81 
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Table 5 
Linearity and STR tests 

 
This table presents results from a sequence of F-tests carried out for each of the convertible 
arbitrage series after estimation of the following auxiliary regression, 

ut = β0zt + β1ztxt + β2ztxt
2

 + β3zt xt
3 

Where the values of ut are the residuals from the linear AR(d) model yt = α0  + θ yt - d + λ' xt + ut.  
The null hypothesis of linearity is H0 : β1 = β2 = β3 = 0.  The selection between L-STAR and E-
STAR models is based on the following series of nested F-tests. 

H3: β3 = 0 
H2: β2 = 0| β3 = 0 

H1 β1 = 0| β2  = β3= 0 
***, ** and * indicate coefficient significance at the 1%, 5% and 10% levels respectively.   

Panel A: HFRI 
D 1 2 3 4 5 6 7 8 
H0 0.01** 0.03** 0.08* 0.43 0.33 0.85 0.46 0.10* 
H3 1.00 0.20 0.16 0.88 0.25 0.72 0.96 0.49 
H2 0.19 0.31 0.07* 0.28 0.62 0.90 0.07* 0.11 
H1 0.00*** 0.01*** 0.42 0.18 0.25 0.40 0.53 0.10 
Panel B: CSFB TREMONT 
D 1 2 3 4 5 6 7 8 
H0 0.00*** 0.00*** 0.15 0.95 0.99 0.75 0.52 0.92 
H3 0.50 0.26 0.55 0.86 0.96 0.84 0.10* 0.77 
H2 0.76 0.64 0.52 0.91 0.98 0.18 0.64 0.61 
H1 0.00*** 0.00*** 0.02** 0.56 0.67 0.92 0.97 0.87 
Panel C: VANHEDGE 
D 1 2 3 4 5 6 7 8 
H0 0.00*** 0.00*** 0.00*** 0.24 0.53 0.01*** 0.81 0.09* 
H3 0.55 0.29 0.00*** 0.14 0.69 0.01*** 0.77 0.35 
H2 0.92 0.45 0.02** 1.00 0.18 0.13 0.65 0.80 
H1 0.00*** 0.00*** 0.07* 0.06* 0.65 0.49 0.51 0.01*** 
Panel D: BRCLYGRP 
D 1 2 3 4 5 6 7 8 
H0 0.08* 0.16 0.13 0.51 0.79 0.13 0.61 0.80 
H3 0.62 0.98 0.38 0.49 0.71 0.83 0.19 0.57 
H2 0.70 0.69 0.09* 0.41 0.57 0.00*** 0.99 0.82 
H1 0.00*** 0.00*** 0.10 0.47 0.60 0.78 0.59 0.55 
Panel E: CISDM 
D 1 2 3 4 5 6 7 8 
H0 0.00*** 0.02** 0.33 0.00*** 0.44 0.85 0.78 0.07* 
H3 0.06* 0.10* 0.16 0.19 0.57 0.54 0.29 0.19 
H2 0.14 0.64 0.49 0.03** 0.09* 0.49 0.75 0.75 
H1 0.00*** 0.00*** 0.53 0.01** 0.89 0.97 0.91 0.02** 
Panel F: HFR EQL 
D 1 2 3 4 5 6 7 8 
H0 0.00*** 0.14 0.12 0.03** 0.36 0.58 0.95 0.57 
H3 0.46 0.81 0.17 0.42 0.40 0.52 0.66 0.92 
H2 0.08* 0.69 0.24 0.03** 0.13 0.32 0.96 0.32 
H1 0.00*** 0.01*** 0.24 0.10* 0.77 0.69 0.70 0.28 
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Table 5. Continued. 
 
Panel G: HFR LRG 
D 1 2 3 4 5 6 7 8 
H0 0.00*** 0.00*** 0.07* 0.53 0.16 0.49 0.94 0.44 
H3 0.21 0.48 0.59 0.13 0.16 0.50 0.42 0.55 
H2 0.28 0.59 0.01** 0.89 0.22 0.32 0.95 0.63 
H1 0.00*** 0.00*** 0.32 0.62 0.39 0.53 0.94 0.16 
Panel H: HFR MID 
D 1 2 3 4 5 6 7 8 
H0 0.01** 0.58 0.17 0.13 0.09* 0.85 0.86 0.98 
H3 0.27 0.92 0.06* 0.30 0.79 0.50 0.91 0.90 
H2 0.51 0.58 0.61 0.05** 0.05* 0.91 0.51 0.81 
H1 0.00*** 0.13 0.37 0.57 0.07* 0.63 0.61 0.89 
Panel I: HFR SML 
D 1 2 3 4 5 6 7 8 
H0 0.00*** 0.00*** 0.00*** 0.01** 0.00*** 0.04** 0.00*** 0.18 
H3 0.02** 0.00*** 0.46 0.05** 0.01*** 0.22 0.01*** 0.17 
H2 0.00*** 0.25 0.00*** 0.24 0.08* 0.01*** 0.33 0.31 
H1 0.01*** 0.23 0.02** 0.04** 0.12 0.83 0.04** 0.33 
Panel J: CBARB 
D 1 2 3 4 5 6 7 8 
H0 0.00*** 0.26 0.66 0.01*** 0.30 0.01** 0.01*** 0.00*** 
H3 0.03** 0.11 0.72 0.11 0.36 0.00*** 0.30 0.03** 
H2 0.07* 0.27 0.35 0.00*** 0.74 0.39 0.00*** 0.03** 
H1 0.15 0.79 0.59 0.28 0.10* 0.99 0.69 0.02** 
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Table 6 
Smooth transition autoregressive regression model 

 
This table reports the non-linear least squares (NLLS) estimation of the smooth transition autoregressive model, 

yt = α’xt + F(zt)β’xt + et ; F(zt) = {1 + exp[−γ(zt – c)]}-1 ; where γ > 0 
***, ** and * indicate coefficient significance at the 1%, 5% and 10% levels respectively.  σ is the residual standard deviation, Adj. R2 is the 
adjusted R2.   JB is the Jacque-Bera test for normality and ARCH(4) is the LM test up to lag 4.  JB and ARCH test results are P-Values.  ρ* 
demonstrates the efficiency gain.  It is computed as σNL/σL where σNL and σL is the residual standard deviation from the non-linear and linear 
models respectively.  AIC and SBC are the Akraike Information Criterion and the Schwartz Bayesian Criterion respectively. 
Variable HFRI CSFB VANHEDGE BRCLYGRP CISDM HFR EQL HFR LRG HFR MID HFR SML CBARB 
α0 -0.04 -0.29 -0.33 -0.18 -0.17 -0.22 -0.35 -1.33** -2.32 -1.67** 
αYLAG 0.49*** 0.44** 0.65 1.82*** 0.35* 0.39** 0.32* 0.02 -0.54 -0.10 
αRMRF 0.03 -0.14** 0.00 0.06 0.03 0.03 -0.21*** 0.28* 0.95** 0.28* 
αSMB 0.05 0.20*** -0.10 0.23** 0.05 0.06 0.05 0.87*** 0.83*** -0.09 
αHML -0.03 -0.14** 0.02 0.04 0.05 0.00 -0.04 0.76*** 2.60*** -0.20 
αDEF 0.29*** 0.57*** 0.75*** 0.43** 0.29*** 0.30*** 0.68*** 0.69*** -0.78 0.39 
αTERM 0.36*** 0.63*** 0.44** 0.84*** 0.28*** 0.44*** 0.64*** 0.86*** -1.27 0.49** 
β0 0.57** 0.35 0.69 0.79 0.76*** 0.13 0.74** 1.70** 2.88 1.98** 
βYLAG -0.20 0.27 -0.16 -1.51*** -0.12 -0.01 0.09 0.28 0.72* 0.08 
βRMRF -0.01 0.16* 0.03 -0.05 0.00 0.03 0.23*** -0.25* -0.93** -0.17 
βSMB 0.00 -0.16* 0.13 -0.22** -0.02 0.01 -0.02 -0.82*** -0.77** 0.17 
βHML 0.04 0.16** -0.03 -0.04 -0.04 0.03 0.07 -0.75*** -2.62*** 0.26* 
βDEF -0.26** -0.50*** -0.66*** -0.35 -0.28*** -0.32*** -0.64*** -0.66*** 0.87 -0.25 
βTERM -0.27** -0.52*** -0.31 -0.71*** -0.22** -0.42*** -0.57*** -0.75*** 1.34 -0.28 
c 0.33*** 0.19 -0.27** 0.07 0.16* 0.21 0.23** -0.78*** -1.40*** -1.64*** 
γ 7.33** 3.92** 6.10*** 6.37*** 8.17*** 5.72** 6.82*** 9.14* 6.51*** 3.96*** 
Diagnostics           
σ 0.17 0.28 0.16 0.14 0.08 0.21 0.22 0.26 0.59 0.60 
R2 0.64 0.65 0.69 0.70 0.71 0.55 0.62 0.45 0.48 0.50 
JB  0.28 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.01 0.09 
ARCH(4) 0.65 0.53 0.00 0.00 0.01 0.18 0.39 0.98 0.00 0.21 
ρ* 0.83 0.60 0.88 0.64 0.95 0.83 0.75 0.78 0.54 0.88 
AIC 612.51 460.05 300.17 114.71 366.14 650.80 514.14 555.13 672.98 810.00 
SBC 615.56 462.72 302.73 116.56 369.01 653.84 516.99 558.01 675.86 813.04 
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Fig. 1. Cumulative Returns of the convertible arbitrage series 

 
This figure plots the cumulative returns for each of the convertible arbitrage series over the sample period. 
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Fig. 1. Continued 
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Fig 2. Transition function for the smooth transition autoregressive (STAR) models 
 
Left hand panel plots the transition function f(zt) against time.  Right hand panel plots f(zt) against 
the transition variable zt for each of the convertible arbitrage series. 
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Fig 2. Continued. 
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Fig 2. Continued. 
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Fig 2. Continued. 
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