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Abstract
With the recent popularity of commodity (electricity) and �nancial futures,

the academic and �nancial communities have seen a renewed interest in hedging
theories. Hedgers in electricity markets use derivative securities, namely futures,
to reduce the risk from variations in the spot market.
Hedging aims at reducing the risk involved in holding a �nancial asset by

taking an exactly o¤setting position, since it reduces the exposure to �uctuations
in commodity prices. Therefore, the use of weekly and monthly futures contracts
as a hedging instrument in 3 European electricity markets [German (EEX),
French (Powernext) and Scandinavian (Nord Pool)], is the focus of this research.
Weekly spot price risk is hedged with weekly futures for the Nordic Electricity
market, month spot risk is hedged with month futures in EEX and Powernext,
and we also take into account the fact that futures contracts and spot prices are
made distinguishable in these markets.
The special features describing electricity markets may imply low correlation

between spot and futures prices and condition the e¤ectiveness of the hedging
strategies. In this work minimum variance hedge ratios are conditionally es-
timated with the multivariate GARCH-BEKK model, and unconditionally by
OLS and the Naive strategy. Empirical results indicate that dynamic hedg-
ing provides superior gains compared to those obtained from static hedging,
and that multivariate GARCH models are successful in reducing the variance
portfolio. With static hedging, several times, we were able to obtain hedging
variance increases.
Results are also compared in and out of sample, and the e¤ectiveness of

multivariate GARCHmodels has to be recognized in terms of variance reduction,
as con�rmed in the empirical part of the present work.

EFM classi�cation: 420 and 450
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1 Introduction

With the recent popularity of commodity (electricity) and �nancial futures, the
academic and �nancial communities have seen a renewed interest in hedging
theories. Hedgers in electricity markets use derivative securities, namely fu-
tures, to reduce the risk from variations in the spot market. They usually short
an amount of futures contracts if they hold the long position on the underlying
asset and vice-versa. An important question is how many futures contracts are
needed. In other words, investors have to decide on the optimal hedge ratio,
that is how many futures contracts should be held for each unit of the underly-
ing assets. The hedge ratio is de�ned by Hull (2006) as "the ratio of the size of
the portfolio taken in futures contracts to the size of the exposure".
Several have been the attempts to model the hedge ratio in the literature.

Moschini and Myers (2002) assumed that the investor takes out futures positions
and holds the position for a week (the nearby contract is typically the most
actively traded, and this liquidity makes it attractive to potential hedgers.). At
the end of the week, the investor reevaluates the futures position and chooses a
new hedge ratio for the following week. Hence, the hedge ratio must be adjusted
every week to re�ect time varying volatility. Gagnon, Lypny and McCurdy
(1998) consider a situation where an N-asset portfolio is hedged with an N-
futures contract portfolio in a dynamic setting. Use daily spot and futures
prices for the Deutsche Mark (DM), the Swiss Franc (SF) and the Japanese
Yen (JY) from 1985 to 1990. They employ a multivariate GARCH (trivariate
GARCH(1,1) system using the full BEKK parameterization.
Laws and Thompson (2005) use futures stock indices weekly data (FTSE100

and FTSE250) and point out that the exponential weighted moving average
method of estimation provided the best estimate of the optimal hedge. These
use the minimum variance hedge ratio and OLS, GARCH and EWMA frame-
works. Moschini and Myers (2002) reject the null of a constant hedge ratio and
that time variation in optimal hedge ratios can solely be explained by deter-
ministic seasonality and time to maturity e¤ects, using weekly corn cash and
futures prices. They develop modi�ed BEKK parameterization for the Bivariate
GARCH(q,r) model.
Kumar, Singh and Pandey (2008) examine hedging e¤ectiveness of futures in

Indian markets. Estimate dynamic (VAR-MGARCH) and constant (OLS, VAR
and VECM) hedge ratio for S&P CNX Nifty index futures, gold futures and
soybean futures. Ripple and Moosa (2005) examine the e¤ect of the maturity
of the futures contract used as the hedging instrument on the e¤ectiveness of
futures hedging, using daily and monthly data on the WTI crude oil futures and
spot prices (NYMEX). Use as measures of hedging e¤ectiveness the near-month
contract and the six-month contract, to conclude that futures hedging is more
e¤ective when the near month contract is used and that hedge ratios are lower
for near-month hedging.
Hua (2007) estimates the constant and dynamic hedge ratios from 3 alter-

native modeling frameworks: OLS, VEC and MGARCH for Chinese copper
futures markets, to conclude that the Multivariate GARCH dynamic hedge ra-
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tios are superior to other hedge ratio estimates in terms of portfolio variance
reduction. Pen and Sévi (2007) use as objective function the minimum variance
hedge ratio and model the dynamic and distributional properties of daily spot
and forward electricity prices across European wholesale markets. They doubt
of the potential of forward markets for hedging purpose.
Modelling the asymmetric behavior of the covariance matrix in a multivariate

setting and studying its consequences in three electricity spot-future systems is
the main object of this paper. We also try to see if the di¤erent hedging speci�-
cations imply di¤erences in terms of performance. As such, hedging length peri-
ods, hedging duration, di¤erent temporal futures contract speci�cations (month
vs weekly), di¤erent European electricity markets and di¤erent "hours of the
day" contracts (base vs peak) are analyzed in this paper in order to take some
conclusions.
The appropriate way to calculate hedge ratios remains a controversial issue

in the literature. The major methodologies for hedging with futures contracts
have been OLS, VAR, VECM and multivariate GARCH. In this paper we use
the �rst and the last one to calculate hedge ratios.
A special feature of multivariate GARCH models is that, with more or less

precision, they always produce good results in terms of hedging. Di¤erent au-
thors use di¤erent speci�cations and use valid arguments to justify one or the
other (Byström, 2003, Torró, 2008, among others).
Multivariate GARCH models capture the dynamic evolution of the variance

covariance matrix and construct an estimate of the optimal hedge ratio using
the conditional variances and covariances of spot and futures returns.
In order to capture the dynamic structure of second moments conditional

on the underlying and price variations, recent studies have concentrated in the
development of hedging ratios changing through time using modelling techniques
based on conditional heteroskedasticity.
The conditional heteroskedastic autoregressive speci�cation (ARCH) was

�rst presented by Engle (1982). It has been extended by Bollerslev (1986) to
the generalized conditional heteroskedastic speci�cation (GARCH). In fact, the
great part of �nancial series contradict the constant correlation hypothesis as
explored by Tse and Tsui (2002). In order to capture the di¤erent conditional
correlation characteristics between rates, Engle and Kroner (1995) develop the
BEKK procedure for the multivariate GARCH estimation. The BEKK algo-
rithm allows changes through time of the conditional covariance which assumes
the positiveness of the conditional variance covariance matrix.
Torró (2008) obtained an acceptable performance by increasing hedging du-

ration and closing futures positions as near as possible to their �nal settlement.
He uses weekly futures contracts and the weekly spot price (the average spot
price for the 7 days in the week) for the period 1998 to 2007 in the Scandina-
vian electricity market; several combinations of hedging period lengths (one to
3 weeks) and times to maturity when futures positions are cancelled (one to 3
weeks) are examined. He argues that the poor e¤ectiveness of hedging strategies
reported by Moulton (2005) was due to the mismatch between the hedging pe-
riod of the spot position (one day) and the underlying settlement period in the
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futures used as a hedging vehicle (one month). In Moulton (2005), the under-
lying spot to the Californian futures was the average of peak hours spot prices
in a month. On the other hand, Byström (2003) uses weekly spot price risk,
hedged with weekly futures but only a one-week hedges duration were consid-
ered in the NordPool market. The intention is to study the short term hedging
performance (one-week holding period), and since short-term future contracts
are more liquid as well as more correlated with the underlying spot prices than
the longer term contracts, futures with three weeks left to maturity are chosen
for the hedging investigations.
Our study will concentrate on weekly (Nord Pool) and monthly (EEX and

Powernext) data. Data selection is a very important aspect for several rea-
sons. Not only due to a required large number of observations, but also because
non-overlapping futures contracts are preferable to avoid arti�cially introduc-
ing autocorrelation in the data series. Therefore, the present study focus on
weekly/monthly futures, taking one price per week/month, with a closing price
each Friday, or the day before if non-tradable, in the NordPool/EEX,Powernext
electricity markets, respectively. For NP we use only base data, but for EEX
and Powernext, base and peak data are considered.
In this work, minimum variance hedge ratios are conditionally and uncon-

ditionally estimated with the multivariate GARCH model, and the OLS and
Naive models. Empirical results indicate that dynamic hedging in the 3 elec-
tricity markets (NP, EEX and Powernext) provides superior gains compared to
those obtained from static hedging.
The structure of the paper develops as follows: Section 2 presents the data

and stationarity tests used, and results obtained; Section 3 presents the min-
imum variance hedging strategy; Section 4 talks about constant vs dynamic
hedging and the models applied to these, and the multivariate GARCH-BEKK
model to be explored here, in terms of hedging e¤ectiveness; Section 5 presents
the hedging performance metric used and empirical results obtained; Section 6
concludes and points out some ongoing developments.

2 Data

This section presents the special characteristics of the electricity markets, the
data used in the work and the cointegration tests applied to spot and futures
prices. Results indicate that all the series are stationary and as such workable for
our purposes since heteroskedasticity of the series is evident from the summary
statistics provided.

2.1 Electricity markets

The electricity industry was considered to be a natural monopoly throughout
most of the 20th century, due to economics of scale in generation and prob-
lems related to separation of transmission and generation activities. Techno-
logical innovations in generation and improved transmission facilities decreased
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economies of scale during the last decades of the century and indicated that
unbundling of transmission, distribution and generation activities could be pos-
sible, provided that a series of institutional di¢ culties could be overcome at
reasonable transaction costs. The current liberalization of electricity markets
is still in a development phase. To become a successful experiment the market
must provide a satisfactory balance between the three main requirements of
economic e¢ ciency, security of supply and environmental protection.
The design of electricity markets is complex due to a series of electricity

characteristics that a¤ect supply and demand. The physical characteristics of
the electricity system complicates the design of electricity markets. Electricity
is non-storable and a �ow commodity, which is consumed within a tenth of a
second after its production by virtually all consumers. The transmission system
can be viewed as a shared pool with numerous entry and exit points, from
which electricity can be injected or withdrawn. The supply and demand of
power must be kept in a near continuous balance throughout the entire grid
to avoid frequency and voltage �uctuations, which can damage generation and
transmission equipment.
Extreme volatility, mean-reversion, skewness and kurtosis of returns, jumps

and spikes, and the seasonal behavior of electricity prices (due to cooling and
heating needs), di¤erentiate the power market from all other commodity mar-
kets. The special features describing this type of markets may imply low corre-
lation between spot and futures prices and condition e¤ectiveness of the hedging
strategies. Also, the volatility of both spot and futures returns change over time
and the assumption of identically and idependently normally distributed returns
seems unrealistic.
It is well known that electricity demand exhibits seasonal �uctuations. The

major factors that explain the seasonality of electricity prices are business ac-
tivities and weather conditions. They mostly arise due to changing climate
conditions, like temperature and the number of daylight hours. In some mar-
kets, and typically those countries that are heavily dependent on hydroelectric
generation, such as Norway (where 99% of generation capacity is hydro), Sweden
(with roughly 50% hydro), and Austria (69%), supply-side seasonality becomes
important: spot prices on the Scandinavian Nord Pool exchange are a¤ected
by rainfall and snowmelt. These seasonal �uctuations in demand and supply
translate into seasonal behavior of electricity prices, and spot prices in partic-
ular. In some markets, however, no clear annual seasonality is present and the
spot prices behave similarly throughout the year with spikes occurring in all
seasons (examples are Spain, Czech Republic, Poland where most of its spikes
are negative, and Italy).
Apart from the annual �sinusoidal�behavior there is a substantial intraday

variability. Higher than average prices are observed during the morning and
evening peaks, while mid-day and night prices tend to be lower than average.
The intra-week variability, related to the business day-weekend structure, is also
nonnegligible. The price begins to increase at roughly 6h a.m., as the populace
wakes and the workday begins. This price increase continues throughout the
day as demand builds, peaking at 16h. Prices begin to fall thereafter as the

6



workday ends and demand shifts to primarily residential usage (that�s why we
distinguish between peak and o¤-peak data in EEX and Powernext).
Higher prices appear from Tuesdays to Fridays, with the highest spikes oc-

curring at friday (weekly e¤ects), and around 9 am to 12 am (daily e¤ects).
However, prices follow back to normal levels overnight. Cuaresma et al. (2004)
report prices higher during weekdays, and intraday patterns and price spikes.
The weekday prices are higher than those during the weekends, when major
businesses are closed. These e¤ects are all present in the data samples consid-
ered in the paper.

2.2 Data used

Our study will concentrate on weekly (Nord Pool) and monthly (EEX and Pow-
ernext) data for three reasons. Firstly the data is more stable than daily data.
Secondly, the various studies suggest that weekly/monthly hedges are more ef-
�cient than daily hedges. Thirdly, for data restrictions.
Electricity futures prices and spot prices were directly obtained from Nord

Pool�s FTP server �les, from the French Powernext website and from data re-
quest to the EEX (German) electricity market. In the spot market, hourly power
contracts are traded daily for physical delivery in the next 24 hour period. This
price is known as the system price. There is a wide range of electricity deriv-
atives contracts (forward, futures, options and contracts for di¤erence) traded
at Nord Pool. EEX trades futures and options, while Powernext only trades
electricity futures. At the moment, the most important are: daily and weekly
futures; monthly, quarterly and yearly forwards, in base prices, at Nord Pool
(NP); monthly, quarterly and yearly futures based on peak and base data1

for both EEX and Powernext (the ones to be used in the empirical part of this
work). The present study focus on weekly/monthly futures, taking one price per
week/month, with a closing price each Friday, or the day before if non-tradable
The data period analyzed is from 18 June 2004 until 15 July 2008, from 1

July 2002 to 27 March 2008 and from 25 September 1995 until 19 July 2007, for
the German, French and Scandinavian markets respectively. During the sample
period in Nord Pool the number of weekly futures contracts able to be traded
has changed, from 4 to 5, to 6, to 7 and from 1998 onwards 8 weekly contracts
were able to be traded daily, however in every period only the four contracts
nearest to the delivery period are free from non-trading problems. With the four
nearest to delivery weekly futures contracts, two data series of futures prices are
built by maintaining the time to delivery constant. For French, the number of
monthly contracts able to be traded has been kept constant, remaining on the
three months after the contract has been settled. As such, four data series of
futures prices were able to be constructed, using base and peak data. For the

1On-Peak data corresponds to the average daily price between 7 am and 19 p.m., and
O¤-Peak data is the daily average price between 00 am to 6 am (6h30m for UK) and 20 p.m.
(19h30m for UK) to 24 p.m.. Instead, "base data" is the average daily price for the 24 hours
in the day. Distinguishing between on-peak and o¤-peak data is important for derivative
contractual terms.
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German electricity markets 7 monthly futures contracts can be traded daily,
and as such we were able to construct 12 data series of futures contracts using
base and peak data. However, similar to Ripple and Moosa (1995) we use only
the near-month and the six-month contract in the EEX market.
In the empirical application futures with di¤erent maturities (3 weeks, 2

months, and 6 months for NP, Powernext and EEX, respectively) are considered
to hedge the spot price variation and a unique hedging lengths is considered:
one week for NP, for EEX and Powernext. We have focused on these strategies
since we were trying to understand if maturity e¤ects were able to conduct to
di¤erent results.

2.3 Tests Of Unit Roots

Augmented Dicky-Fuller (ADF) and Philips-Perron (PP) tests attempt to ac-
count for temporally dependent and heterogeneously distributed errors by in-
cluding lagged sequences of �rst di¤erences of the variable in its set of regressors.
The null hypothesis for ADF and PP test is that the variables contain a unit
root or they are non-stationary at a certain signi�cant level. However, the power
of standard unit root tests which have null hypothesis of non-stationarity has
recently been questioned by Schwertz (1987) and DeJong and Whiteman (1991)
in that these tests often tend to accept the null too frequently against a station-
ary alternative. It appears that the failure to reject the null may be simply due
to the standard unit root tests having low power against stable autoregressive
alternatives with roots near unity. In particular, this knife-edge assumption of
an exact unit root could lead to substantial biases, even in large samples. In
view of the growing controversy surrounding the general tests for unit root, a
di¤erent series of tests�KPSS tests proposed by Kwiatkowski et al. (1992) can
also be employed in the context.
In the KPSS tests, the null hypothesis is that a series is stationary around

a deterministic trend (TS) and the alternative hypothesis is that the series is
di¤erence stationary (DS). The series is expressed as the sum of deterministic
trend, random walk, and stationary error as:

yt = �t + rt + "t

where rt = rt�1 + ut and ut is i.i.d.
�
0; �2u

�
:

The test is the LM test of the hypothesis that rt has zero variance. If this
happens, the above equation becomes a constant and thus the series fytg is
trend stationary.
We have performed ADF, PP and KPSS test for all markets and strategies

considered. However, all of them, despite the above discussion of seasonality and
electricity main characteristics, con�rm the assumption of stationary electricity
prices. As such, table 1 presents the tests applied to both the spot and futures
price series (logarithms) in the sample (for the futures is just for one of the
strategies in each market). We have seen no need to include all test results
since we have reached similar results for all strategies and all the tests con�rm
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the same. As such, we are only presenting the KPSS test results2 . They all
con�rm stationarity with trend, with trend and drift, and with none.

Table 1: Stationarity of log-prices over the sample period
Powernext Base Critical values Critical values

Variable KPSS
test (drift) 1% 5%

KPSS
test (drift
+ trend)

1% 5%

ln St 0,021704 0,739 0,463 0,020979 0,216 0,146

ln Ft 0,057923 0,739 0,463 0,057807 0,216 0,146
Powernext Peak Critical values Critical values

Variable KPSS
test (drift) 1% 5%

KPSS
test (drift
+ trend)

1% 5%

ln St 0,023396 0,739 0,463 0,02229 0,216 0,146

ln Ft 0,040866 0,739 0,463 0,040715 0,216 0,146
EEX Base Critical values Critical values

Variable KPSS
test (drift) 1% 5%

KPSS
test (drift
+ trend)

1% 5%

ln St 0,075158 0,739 0,463 0,044192 0,216 0,146

ln Ft 0,02531 0,739 0,463 0,025346 0,216 0,146

EEX Peak Critical values Critical values

Variable KPSS
test (drift) 1% 5%

KPSS
test (drift
+ trend)

1% 5%

ln St 0,06189 0,739 0,463 0,036644 0,216 0,146

ln Ft 0,018747 0,739 0,463 0,018753 0,216 0,146

NP Base Critical values Critical values

Variable KPSS
test (drift) 1% 5%

KPSS
test (drift
+ trend)

1% 5%

ln St 0,071547 0,739 0,463 0,054726 0,216 0,146

ln Ft 0,043127 0,739 0,463 0,044028 0,216 0,146

ln St and ln Ft stand for the log of the spot and futures electricity prices, respec-
tively. The futures series used is one of the strategies adopted in the present study
(for each market is the most liquid strategy). The table presents the KPSS test statis-
tic with drift and with drift and trend for all the markets and their respective critical
values at 1% and 5%. The stationarity hypothesis is thus con�rmed for all the samples.

ADF and PP tests, applied to the natural logs of prices indicate the rejection
of the null hypothesis of stationarity (both for peak and base data in EEX
and Powernext markets), while the KPSS tests accept the null hypothesis of
stationarity. The conclusion that the series is I(0) is con�rmed by the tests
applied to the �rst di¤erences. We may conclude that the log price series do
not have a trend nor drift. As such, error correction due to cointegration is not
expected to improve the behavior of GARCH models due to stationarity.

2ADF and PP provide almost the same results, and we did not see the need for presenting
them all here. Results will be provided upon request.
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The univariate characteristics of spot (base or peak) and futures return series
are summarized in table 2. The high excess kurtosis value suggests that we are in
the presence of leptokurtic distributions, what means we have heteroskedasticity
present in the data.

Table 2: Instantaneous returns summary statistics
Powernext Base

Variable Mean St. Dev. Skewness Kurtosis J.­B. p­value Obsv.

st 0,0009 0,1734 ­0,1206 9,5501 1856 0,0000 1037

ft 0,0009 0,0373 3,6543 50,9036 101460 0,0000 1037
Powernext Peak

Variable Mean St. Dev. Skewness Kurtosis J.­B. p­value Obsv.

st 0,0008 0,2009 ­0,0989 11,1443 2868 0,0000 1037

ft 0,0009 0,0445 4,7880 84,7696 292865 0,0000 1037
EEX Base

Variable Mean St. Dev. Skewness Kurtosis J.­B. p­value Obsv.

st 0,0002 0,2141 0,5912 18,5299 14666 0,0000 1451

ft 0,0005 0,0292 3,8964 154,6940 1394883 0,0000 1451
EEX Peak

Variable Mean St. Dev. Skewness Kurtosis J.­B. p­value Obsv.

st 0,0001 0,2568 0,4046 18,3625 14308 0,0000 1451

ft 0,0005 0,0329 1,2414 96,6766 530913 0,0000 1451
NP Base

Variable Mean St. Dev. Skewness Kurtosis J.­B. p­value Obsv.

st ­0,0002 0,0778 0,8775 34,9405 125437 0,0000 2942

ft 0,0001 0,0404 1,0579 27,8902 76440 0,0000 2942

Notation st and ft represent returns of the spot and future prices respectively.
The excess kurtosis values takes the normal distribution as the basic one.

Both futures returns and the spot returns have means very close to zero, and
we may say that the unconditional distribution of spot returns and in particular
future returns are non-normal, as evidenced by skewness, high excess kurtosis
and high values for the Jarque-Bera test statistic.
Evidence shows that asset storability does not a¤ect the existence of coin-

tegration between cash and futures prices and the usefulness of future markets
in predicting future cash prices. However, it may a¤ect the magnitude of bias
of futures markets�estimates (or predictions) for future cash prices. In fact, re-
searchers have found mixed evidence of cointegration between cash and futures
prices for storable commodities. Some (Covey and Bessler, 1995) have argued
that cointegration may depend on asset storability. These authors have argued
that researchers should not expect cointegration between cash and futures prices
for nonstorable commodities but should expect it for storable commodities.
We wanted also to check this, and to test cointegration, the Johansen�s test

was used, and although results are not presented here, this correlation varies
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between 0,7 and 0,86. The highest correlation between spot and futures is
obtained for those futures positions held until maturity. As such, only these
will ensure a good risk reduction for hedgers.

3 Hedging speci�cation

In this section, the minimum variance hedge ratio is estimated.
Torró (2008) uses Minimum Variance Hedge Ratio estimated by OLS and

Multivariate GARCH with a bivariate t-student distribution. Moulton (2005)
and Byström (2003) also use this as the main objective function. Lien and Tse
(2000) consider the optimal strategy for hedging the downside risk measured by
the lower partial moments. Lien and Tse (2002) evaluate constant hedge ratios
and time-varying hedge ratios, exploring di¤erent econometric implementations.
They provide a survey that reviews some recent developments in futures hedging.
Harris and Shen (2006) point out that the use of variance as a measure of

portfolio risk - and hence the use of minimum variance hedging as a method
of minimizing risk- is justi�ed by assuming either that investors have quadratic
utility functions or that asset returns are drawn from a multivariate ellipti-
cal distribution. Conclude that Minimum-VaR hedging yields hedge portfolios
that are typically less negatively skewed and/or less leptokurtic than minimum-
variance hedging both in sample and out-of-sample (similar conclusions stand
for Minimum CVaR). Minimum VaR and Minimum CVaR hedge ratios are typ-
ically lower than minimum-variance hedge ratios, suggesting that smaller short
positions are typically required to minimize VaR or CVaR than to minimize
variance
Mattos, Garcia and Nelson (2005) calculate hedge ratios under utility max-

imization based on a constant relative risk aversion (CRRA) utility function
which allows the absolute level of risk aversion to change with wealth. Eftekhari
(1998) minimizes the lower partial moment of order two (LPM2) with target
set to zero to calculate the optimal hedge ratio for the FTSE-100 stock index
from 1985 to 1994. The general result is that minimum-LPM hedge ratios are
slightly smaller and tend to yield a better risk/return combination than the
minimum-variance hedge ratios. Similarly, Lien and Tse (2000) calculated the
minimum-LPM and the minimum- variance hedge ratios for the Nikkei Stock
Average index over 1-week hedging horizons from January 1988 to August 1996.
Three orders of the LPM were used (1, 2, and 3), and the target returns ranged
from �1.5% to +1.5%. Their �ndings suggest that the minimum-LPM and the
minimum- variance hedge ratios may di¤er sharply, particularly when the hedger
is willingly to absorb small losses and very cautious about large losses, i.e., when
the target return is small and the order of the LPM is large. Turvey and Nayak
(2003) found that minimum-semivariance hedge ratios were usually smaller than
the minimum- variance hedge ratios, but the di¤erence between the two ratios
varied depending on the target and the distribution of risk for the wheat mar-
ket. Moreover, the minimum-semivariance hedge was found to o¤er a better
protection against downside risk than the minimum- variance hedge. A di¤er-
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ent approach was followed by Chen, Lee and Shrestha (2001), who adopted a
mean-downside risk framework to estimate optimal hedge ratios. They argued
that these hedge ratios should be calculated using utility maximization in a
mean-risk framework.
As such, some avenues for future research and investigation are implicit in

this brief review, and are being subject of current research. Next we concentrate
on the most used one: the Minimum Variance Hedge Ratio.

3.1 Minimum-variance hedge ratio

Let�s illustrate hedging decisions with a one-period model. At the beginning of
the period, that is, t=0, an individual is committed to a given spot position, Q,
on a speci�c asset. A futures market for the security is available with di¤erent
maturities. To reduce the risk exposure, the individual may choose to go short
in the futures market. Due to liquidity and other concerns, let�s assume that he
trades only in the "nearby" futures contract (that is, the contract the maturity
of which is closest to the current date). With the futures trading, the individual
becomes a short hedger. Let X denote the futures position. At the end of the
period, say, t=1, the hedger�s return, r, is calculated as follows:

r = (sQ� fX) =Q
where st is the return of the spot position and ft is the return of the futures
position, both at time t. As both spot and futures returns are unknown at
t=0, r is a random variable. The hedger will choose X to minimize the risk (or
uncertainty) associated with the random return.
In the �nance literature, the risk of a random variable is usually measured by

the variance (or standard deviation) conditional on the available information.
Let � denote the information set at t=0. Then the hedger�s risk is summarized
by the conditional variance of r, V ar (rj�).

V ar (rj�) =
�
V ar (sj�)Q2 � 2Cov (s; f j�)XQ+ V ar (f j�)X2

�
=Q2

The optimal futures position X� is chosen to minimize V ar (rj�) : Thus,

X� = [Cov (s; f j�) =V ar (f j�)]Q = hQ
where h = [Cov (s; f j�) =V ar (f j�)] is the minimum-variance hedge ratio.

3.2 The expected utility framework

A more general approach to the hedging problem relies upon the expected-
utility framework. Suppose that the hedger is endowed with a von-Neumann
Morgenstern utility function U(:) such that U 0(:) > 0 and U 00(:) < 0. Let E(:)
denote the expectation operator with respect to the joint distribution of s and
f . The optimal futures position, Xe, is chosen to maximize the (conditional)
expected utility E fU (rj�)g. That is, Xe must satisfy the following condition
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E

�
U 0
�
sQ� fXe

Q

�
f

Q
j�
�
= 0

or alternatively,

Cov

�
U 0
�
sQ� fXe

Q

�
;
f

Q
j�
�
+ E

�
U 0
�
sQ� fXe

Q

�
j�
�
E

�
f

Q
j�
�
= 0

Assuming that s = � (�)+� (�) f +", where f and " are stochastically inde-
pendent. Considering that E (f j�) = 0 (that is, the futures price is unbiased),
the second term on the left-hand-side of the above equation vanishes. Moreover,
when Xe = � (�)Q we have sQ� fXe = � (�)Q+ "Q, which is stochastically
independent of f . Thus, the �rst term on the left-hand-side of the equation is
also zero. In other words, the optimal solution is Xe = � (�)Q, which in turn
equal to Cov (s; f j�)Q=V ar (f j�) : Therefore, the optimal hedge ratio as de�ned
by Xe=Q and derived from a general utility function is equal to the minimum
variance hedge ratio.
If the futures price is biased such that E (f j�) 6= 0 (due to transaction costs,

for example), then the optimal hedge ratio diverges from the minimum-variance
hedge ratio. In this case, however there is a speculative motivation to trade so as
to take advantage of the bias in the futures market. Consequently, Xe contains
both hedging and speculative components. The former is characterized by the
condition E (f j�) = 0. Thus, the hedging component of the optimal futures po-
sition is equal to the minimum-variance futures position. Assuming the hedger
has a mean-variance utility function given by E (rj�) � (A=2)V ar(rj�); where
(A=2) is the Arrow-Pratt risk aversion coe¢ cient, the optimal futures position
X� is E (�f j�) =A+[Cov (s; f j�) =V ar (f j�)]Q. The �rst component represents
the speculative trading whereas the second is the usual optimal hedge position.
In the above derivation both minimum-variance and optimal hedge ratios

are functions of the information set �. As � changes, both hedge ratios change.
Typical information sets include the historical spot and futures returns, the
contract maturity and the hedge horizon. Whenever the spot and futures return
distributions depend on the information, both optimal hedge and minimum-
variance hedge strategies depend on the time-varying dynamic hedge ratios.
Transaction costs are not considered in the present paper when comparing

hedging methods, as the hedging theoretical framework is a one-period model for
all hedging methods. Futhermore, the individual is considered to take futures
positions at the beginning of the period and cancel them at the end of the
period. since hedging ratio values are quite similar within methods, these will
have similar transaction costs.
Transaction costs are also ignored since Meneu and Torró (2002) concluded

(using the IBEX35 index and futures contracts on this) that variance reduction
is economically signi�cant in the sample period but not in the out-of-sample
period, where transaction costs in dynamic hedging absorb the small di¤er-
ences in risk reduction. Futhermore, they conclude that dynamic hedging with
high transaction costs are delayed in updating information a¤ecting the optimal
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hedge ratio, meaning that hedge ratios and hedging strategies are insensitive to
any asymmetric consideration. When transaction costs are included, they con-
clude that investors would prefer in some cases a static strategy because the
small risk reduction achieved do not compensate the transaction costs needed
to maintain a dynamic strategy.
Since transaction costs are not included into the analysis, the optimal hedge

ratio will e¤ectively coincide with the minimum variance hedge ratio and both
theoretical versions of the same subject equal.

4 Constant versus Dynamic Hedging

As before, let St and Ft be the natural logarithm of spot and futures prices,
respectively, and st and ft denote the changes in the logarithms of spot and
futures prices at time t. Next, the constant and dynamic hedge ratio estimation
models to be used in this work are presented.
When static hedging strategies are used, each moment the agent faces de-

cision whether to hedge with the current future price estimate or wait for new
information. When we refer to static hedging we mean that once the hedge is
created it is not changed after that. So, static hedging means that the hedging
ratio h remains constant over time.
Before discussing dynamic hedging strategies, the investor has to take a

basic decision on the best static hedging ratio. This decision depends on several
factors and upon certain decisions of the investor: choice of the foreign countries
of the investment, frequency of investment changes, limits of risk and exposure
in the dynamic hedging strategy,... The static hedging strategy determines
the equilibrium point or neutral point of the dynamic hedging strategy. If the
position taken in derivatives changes over time, the hedging strategy is dynamic.
We will assume that the market is incomplete, therefore not all the risks are

hedgeable through trading the underlying stock. If the market were complete,
given su¢ cient initial capital, all claims could be replicated by trading the stock
dynamically. Static derivatives hedges do not add anything to dynamic hedges
in complete markets, but of course they are very valuable tools in realistic
incomplete market models, where there may be risk factors that cannot be
eliminated just by dynamic trading of the underlying stock. By incorporating
static hedges, we enlarge the set of feasible hedging strategies that the investor
can choose from and allow for a better hedging performance.

4.1 Constant Hedge Ratio Estimation Model

The conventional method is the minimum variance (MV) ratio, which is h� =
cov (st; ft) =V ar (ft), i.e., the covariance between spot and futures returns rel-
ative to the variance of the futures return. Empirically, the one period hedge
ratio is estimated by the slope from the following ordinary least squared (OLS)
regression equation:
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st = �+ h
�ft + "t

Where "t is the error term. The minimum hedge ratio is h�:

4.2 Time-varying Hedge Ratio Estimation Model

Developed by Engle (1982) and then Bollerslev (1986), the autoregressive con-
ditional heteroskedasticity model (ARCH) sparkled a substantial body of work
which concerns with not only further examining the second moment of eco-
nomic and �nancial time series, but also extending and generalizing the initial
ARCH model to better �t the situation being investigated. Bollerslev, Engle
and Wooldridge (1988) generalised the univariate GARCH to a multivariate
dimension to simultaneously model the conditional variance and covariance of
two interacted series. This multivariate GARCH model is thus applied to the
calculation of dynamic hedge ratios that vary over time based on the conditional
variance and covariance of the spot and futures prices. Engle and Kroner (1995)
present various MGARCH models with variations to the conditional variance-
covariance matrix of equations.
Generalised from GARCH(1,1), a standard M-GARCH(1,1) model is ex-

pressed as:24hss;thsf;t
hff;t

35 =
24css;tcsf;t
cff;t

35+
24a11 a12 a13
a21 a22 a23
a31 a32 a33

35�
24 "2s;t�1
"s;t�1"f;t�1
"2f;t�1

35+
24b11 b12 b13
b21 b22 b23
b31 b32 b33

35�
24hss;t�1hsf;t�1
hff;t�1

35
where hss; hff are the conditional variance of the errors ("s;t; "f;t) from the
mean equations. Where we have that:

"tj�t�1 � BN (0;Ht) with

"t =

�
"st
"ft

�
and Ht =

�
hss;t hsf;t
hfs;t hff;t

�
Karolyi (1995) suggests that the BEKK (Baba, Engle, Kraft and Kroner)

model allows the conditional variance and covariance of the spot and futures
prices to in�uence each other, and, at the same time, do not require the estima-
tion of a large number of parameters to be employed. The model also ensures
the condition of a positive semi-de�nite conditional variance-covariance matrix
in the optimization process which is a necessary condition for the estimated vari-
ance to be zero or positive. The BEKK parameterization for the MGARCH(1,1)
model is written as:
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�
h2ss;t h2sf;t
h2fs;t h2ff;t

�
=

�
bss bsf
0 bff

�0 �
bss bsf
0 bff

�
+�

css csf
cfs cff

�0 �
"2s;t�1 "s;t�1"f;t�1

"f;t�1"s;t�1 "2f;t�1

� �
css csf
cfs cff

�
+

+

�
gss gsf
gfs gff

�0 �
h2ss;t�1 h2sf;t�1
h2fs;t�1 h2ff;t�1

� �
gss gsf
gfs gff

�
where h2ss;t; h

2
ff;t and h

2
sf;t are the conditional variance and covariance of the

errors ("st; "ft) from mean equations. Conditional variance and covariance only
depend on their own lagged squared residuals and lagged values. The MGARCH
model incorporates a time-varying conditional covariance and variance between
the spot and futures prices and hence generates more realistic time-varying
hedge ratios.
Notice that the assumption of normality in electricity log-price variation is

not a realistic one. Has we have seen in the summary statistics of the data,
one fact that characterizes electricity price distribution is its leptokurtosis due
to the presence of many extreme values (jumps and/or spikes). As such, as an
alternative empirical distribution to the normal one we will also use the bivariate
t-student distribution in the multivariate-GARCH BEKK model used here:

"tj�t�1 � t (0;Ht; v)

where v is the degrees of freedom parameter of a conditional bivariate t-student
distribution.
Bivariate GARCH modelling allows to model the conditional second mo-

ments, but also the cross moments, with special relevance, in our case, to the
contemporaneous covariance between electricity spot and futures. That�s why
the conditional, on time t� 1 available information, error term vector follows a
bivariate normal law, and for the comparison purpose also a bivariate t distri-
bution, being Ht the positive de�nite variance covariance matrix dependent on
time.

5 Hedging e¤ectiveness and Results

In this section we will present all the obtained results derived from the econo-
metric techniques analyzed before. Furthermore, we present, test and show the
obtained results using the variance hedging e¤ectiveness metrics.

5.1 Hedging e¤ectiveness metrics: the variance

The performance metric used to examine and compare the hedging performance
of each strategy is the variance. The variance metric (HE1) measures the per-
centage reduction in the variance of a hedged portfolio as compared with the
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variance of an unhedged portfolio. The hedged portfolios are calculated by using
the OHR�s derived from the hedging models, with the best model being the one
with the largest reduction in the variance. The performance metric is:

HE1 = 1�
�
V ariancehedgedPortfolio
V arianceunhedgedPortfolio

�
This gives us the percentage reduction in the variance of the hedged portfo-

lio as compared with the unhedged portfolio. When the futures contract com-
pletely eliminates risk, we obtain HE1 = 1 which indicates a 100% reduction in
the variance, whereas we obtain HE1 = 0 when hedging with the futures con-
tract does not reduce risk. Therefore, a larger number indicates better hedging
performance.
The variance is a standard measure of risk in �nance and has become the

dominant measure of hedging e¤ectiveness used by hedgers. It has also been
extensively applied in the literature on hedging and was used by Ederington
(1979) to evaluate hedging e¤ectiveness. The advantage of using the variance
as a measure of performance is its ease of calculation and interpretation.
So, in order to measure hedging e¤ectiveness we present the risk reduction

measures, computing the variance of a hedge strategy as the variance of the
hedged portfolio and the risk reduction achieved for each strategy is computed
by comparison with the variance of the spot position (ht = 0;8t).
Using unconditional probability distributions, the hedge ratio can be esti-

mated from a linear relationship between spot and futures returns by ordinary
least squares (OLS) by simply adding an intercept and a white noise to the
equation:

st = �+ h
�ft + "t

Using this speci�cation, the OLS estimator or h will be the unconditional
de�nition of the optimal hedge ratio.
When a hedge where the futures position have the same size but the opposite

sign than the position held in the spot market is considered, we have what is
called a Naive hedge ratio (ht = 1;8t), which will also be considered in the
present work.
As such, following Park and Switzer (1995) we choose to evaluate to what ex-

tent the di¤erent hedges reduce the unconditional variance (the sample variance
of the spot returns and hedge portfolio returns) over the test period.
The purpose of the hedging exercise has been to minimize the variance (un-

certainty) of the hedge portfolio. For an in�nitely risk avert trader or martingale
futures, this is equal to utility maximizing as seen above.
The data sets available where all divided into an estimation period, and an

out-of-the-sample period consisting of the last 100 observations for each market.
For the dynamic model, the hedge ratio is updated each day in the test period.
To evaluate the hedging performance out-of-sample, one looks at the test

period covering approximately the months February 2008 - July 2008, for EEX,
the months October 2008 - March 2008, for Powernext and April 2007 - July
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2007 for the Scandinavian market. All hedge ratios are predicted hedge ratios
using predicted variances and covariances.

5.2 Empirical results

Table 3 displays the variance reduction of the hedging method. It contains data
for the three di¤erent markets under analysis and displays, in each panel, the
risk reduction achieved by each hedging strategy explored here: Naive, OLS and
multivariate GARCH-BEKK (assuming the errors follow a bivariate normal -
4th row of each panel - and a bivariate t distribution - last row of each panel. The
second column reports in-the-sample results and the third column reports out-of-
the-sample results. For all electricity markets under analysis the out-of-sample
results are taken for the last 100 observations of the sample periods. Panels 3A,
3B, 3C, and 3D are referred to the EEX electricity market data. Panels 3E, 3F
are for the Powernext market (only the P2 - two months to expiration, one week
before - and B1 - one month to expiration, one week before - strategies where
considered) . The rest of the panels (3G and 3H) are for the NordPool strategies
(3,1: 3 weeks left to maturity, one week prior to expiration; 1,1: one week left
to maturity, one week prior to expiration) and hedging variance reductions.
The spot variance reduction is computed by comparison with the unhedged

spot position variance, in the �rst row of each panel. Those strategies with
largest risk reduction are indicated with a plus (+) for ease of identi�cation.
Results obtained imply that the better statistical performance of the multivari-
ate GARCH-BEKK model implies also a better hedging strategy performance.
In the one week hedges, the Naive and OLS strategies clearly obtain the worst
score, favouring the multivariate GARCH models which are those that in fact
deliver the highest variance reduction.

Table 3: Hedging e¤ectiveness
Table 3A. Hedging E¤ectiveness

This table displays the risk reduction achieved by each headging strategy. NAIVE, OLS and BEKK

EEX - P1

In the sample Out of the sample
Spot variance (no hedging)(b = 0) 0,06467 0,07921

Hedging Risk reduction (%) Risk reduction (%)
Naive (b = 1) -3,0 3,5

OLS
�
b = hFS

hF

�
0,3 4,3

Diag-BEKK
�
bt =

hFS;t
hF;t

�
14,5 32,1

T-Diag-BEKK
�
bt =

hFS;t
hF;t

�
23,4 38,4+
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Table 3B. Hedging E¤ectiveness
This table displays the risk reduction achieved by each headging strategy. NAIVE, OLS and BEKK

EEX - P6

In the sample Out of the sample
Spot variance (no hedging)(b = 0) 0,06467 0,07921

Hedging Risk reduction (%) Risk reduction (%)
Naive (b = 1) -2,9 -2,9

OLS
�
b = hFS

hF

�
0,0 0,1

Diag-BEKK
�
bt =

hFS;t
hF;t

�
17,4+ 16,5

T-Diag-BEKK
�
bt =

hFS;t
hF;t

�
12,6 13,3

Table 3C. Hedging E¤ectiveness
This table displays the risk reduction achieved by each headging strategy. NAIVE, OLS and BEKK

EEX - B1

In the sample Out of the sample
Spot variance (no hedging)(b = 0) 0,04457 0,06050

Hedging Risk reduction (%) Risk reduction (%)
Naive (b = 1) -3,1 5,3

OLS
�
b = hFS

hF

�
0,2 8,5

Diag-BEKK
�
bt =

hFS;t
hF;t

�
11,4 22,2

T-Diag-BEKK
�
bt =

hFS;t
hF;t

�
17,8 33,2+

Table 3D. Hedging E¤ectiveness
This table displays the risk reduction achieved by each headging strategy. NAIVE, OLS and BEKK

EEX - B6

In the sample Out of the sample
Spot variance (no hedging)(b = 0) 0,04457 0,06050

Hedging Risk reduction (%) Risk reduction (%)
Naive (b = 1) -2,6 -4,7

OLS
�
b = hFS

hF

�
0,0 0,7

Diag-BEKK
�
bt =

hFS;t
hF;t

�
19,8 28,7+

T-Diag-BEKK
�
bt =

hFS;t
hF;t

�
10,7 12,7
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Table 3E. Hedging E¤ectiveness
This table displays the risk reduction achieved by each headging strategy. NAIVE, OLS and BEKK

FF-P2

In the sample Out of the sample
Spot variance (no hedging)(b = 0) 0,04317 0,01372

Hedging Risk reduction (%) Risk reduction (%)
Naive (b = 1) -1,7 -6,2

OLS
�
b = hFS

hF

�
0,4 0,3

Diag-BEKK
�
bt =

hFS;t
hF;t

�
15,5+ 5,6

T-Diag-BEKK
�
bt =

hFS;t
hF;t

�
11,6 -2,7

Table 3F. Hedging E¤ectiveness
This table displays the risk reduction achieved by each headging strategy. NAIVE, OLS and BEKK

FF-B1

In the sample Out of the sample
Spot variance (no hedging)(b = 0) 0,03169 0,01427

Hedging Risk reduction (%) Risk reduction (%)
Naive (b = 1) -0,7 -7,8

OLS
�
b = hFS

hF

�
0,8 0,2

Diag-BEKK
�
bt =

hFS;t
hF;t

�
-2,4 -2,6

T-Diag-BEKK
�
bt =

hFS;t
hF;t

�
2,1 2,4+

Table 3G. Hedging E¤ectiveness
This table displays the risk reduction achieved by each headging strategy. NAIVE, OLS and BEKK

NP-31

In the sample Out of the sample
Spot variance (no hedging)(b = 0) 0,00613 0,00375

Hedging Risk reduction (%) Risk reduction (%)
Naive (b = 1) -11,6 -7,8

OLS
�
b = hFS

hF

�
0,0 0,0

Diag-BEKK
�
bt =

hFS;t
hF;t

�
20,6+ 13,2
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Table 3H. Hedging E¤ectiveness
This table displays the risk reduction achieved by each headging strategy. NAIVE, OLS and BEKK

NP-11

In the sample Out of the sample
Spot variance (no hedging)(b = 0) 0,00613 0,00375

Hedging Risk reduction (%) Risk reduction (%)
Naive (b = 1) 21,0 0,0

OLS
�
b = hFS

hF

�
2,7 -3,1

Diag-BEKK
�
bt =

hFS;t
hF;t

�
2,3 4,0+

We con�rm the variance reduction of the di¤erent hedging methods in elec-
tricity markets, compared to Byström (2003), Moulton (2005) and Torró (2008).
The spot variance reduction is computed comparing with the unhedged spot
portfolio variance. The reduction obtained is about 15% in the sample and 20%
in the out-of-sample part. In both parts, dynamic methods reduce the risk more
than the static hedging method considered (OLS). Nevertheless, the di¤erences
are quite high in some markets like the EEX with monthly futures contracts,
but very small depending on the strategies adopted. Moreover, results become
inconclusive with respect to duration e¤ects, but hedging with three week spot
risk is better in terms of variance reduction in the Nord Pool market.
Results obtained for the French electricity market where even more di¢ cult

to interpret because we were not able to see a behavioral pattern given the
results obtained. As such, we decided to present the results for only two of the
strategies adopted and the t-distribution assumed improved the results for the
base (B1) strategy "1 month to expiration". We attribute these inconsistencies
to the fact that this is the most recent market from all the markets under
analysis, and data availability may be in�uencing the results obtained.
As we are able to see, for most of the strategies, the Naive strategy results

(in and out sample) indicate that in that case instead of variance reduction
we might have variance increases, which contradicts the literature that defend
unconditional hedges.
Not all hedges reduce the variance. The best hedge is in almost all cases

the bivariate GARCH - BEKK hedge. Contrarily to Byström (2003) results,
the dynamic hedge ratios perform better than the static ones, and as such there
seems to be major gains from modelling spot and futures returns, despite if the
spot is on the base or peak data, if we are talking of month or week futures
contracts, or even despite the market under analysis and the strategy used (the
exception is the NordPool market).
The �nding that the OLS hedge performs even slightly better (in most of the

cases) than the naive hedge, but that conditional hedges perform even better, is
an example of how simpler models do not always work well (which contradicts
Park and Switzer, 1995, and Byström, 2003). The theoretical analysis above
suggests that unconditional hedges, the naive and OLS hedge, do not outperform

21



the conditional hedges, since the conditional ones reduce the variance more. In
order to update the hedge according to the dynamic model one has to buy or
sell futures each day, and the cost of daily updating the hedge does not seem to
in�uence. Once again, we reinforce the idea that transaction costs in the market
are not the reason for not to hedge. So, when adding the costs and time spent
on designing and estimating the dynamic hedges to the actual transaction costs
we may not probably end up with a signi�cant additional daily cost compared
to the "buy and hold" OLS hedge.
A curious fact is the improvement obtained in variance reduction when con-

ditional hedges are estimated under the t-distribution relative to the bivariate
normal distribution assumed. However this is only con�rmed relative to the
closest to maturity hedging strategies (one month to maturity, one week before,
being it relative to peak data - EEX P1 - or to base data - EEX B1 and FF B1.
For the other markets, much more work remains to be done. We have also con-
cluded that the risk reduction, relative to in-sample results for the EEX market,
is higher for the six months to expiration, one week prior, relative to the one
month to expiration, one week prior, but we need to extend the results to other
strategies that can be adopted in order to con�rm these previous �ndings, since
the results obtained are not conclusive with this respect. Variance reduction is
even higher when we consider only peak data, than that obtained for base data.
This may be due to the fact that peak data is even more volatile and as such
an even higher risk reduction should be expected in hedging the spot-peak with
futures peak prices contracts, as it was the case.
Finally, we should reinforce the idea that di¤erences in the adopted hedging

strategies and period lenghts must be considered when we try to compare our
results to those obtained by other author�s in previous works (Byström, 2003
and Torró, 2008).

6 Conclusions

In this work we have tried to explore the hedging e¤ectiveness of electricity
futures for three di¤erent European electricity markets (Scandinavian, German
and French markets). For this we employ minimum variance hedge ratios, which
are conditionally estimated with the multivariate GARCH model. Empirical re-
sults obtained indicate that dynamic hedging provides superior gains compared
to those obtained from static hedging, but even so results depend on which
strategy and market is being analyzed.
For these results we use the traditional unconditional naive and OLS hedge

and the dynamic conditional GARCH-BEKK hedges, where we conclude that,
with more or less precision, they all reduce the variance of the hedge portfolio
compared to the spot position. The errors distributional assumption is also an
important aspect when we are talking about electricity markets since variance
reduction is even more evident, but the market under analysis may still in�uence
this results.
However, there are superior gains including heteroskedasticity and time-
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varying variances in the calculation of hedge ratios. As such, multivariate
GARCH models are usefull in reducing the variance portfolio.
Lee et al. (1987) found that if the near-month contract is used as the hedging

instrument, the hedge ratio will be higher than it would be if a contract with a
longer maturity is used for this purpose. Another issue is the relation between
the frequency of the data used to estimate the hedge ratio and the hedging
horizon, particularly the question of whether or not the data frequency should
be equal to the hedging horizon. Milliaris and Urrutia (1991) used weekly data
to estimate the optimal hedge ratio and found hedging to be more e¤ective when
the hedging horizon was equal to the frequency of the data. Also by using weekly
data, Benet (1992) found that shorter hedging horizons produced more e¤ective
hedging. And we were able to con�rm this for the EEX market. However, Chen
et al. (2003) stress the potential problem of matching the length of the hedging
horizon with data frequency, which leads to the loss of data observations. A
going on research will be focusing on this type of issues, that were not explored
in detail in the present paper.
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