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Müller and André Uhde for helpful comments.



Abstract

In this paper, a new methodical framework for the analysis of bank conta-
gion is proposed. By combining conventional event study and copula method-
ology, this framework allows for an analysis of bank contagion that directly
assesses the changes of dependencies between banks instead of proxying con-
tagion via abnormal returns. Furthermore, to the best knowledge of the au-
thor, this paper is the first one to analyse changes in the dependence struc-
ture of banks around bailout announcements. More precisely, the empirical
study given in this paper tries to answer two questions: Firstly, did the an-
nouncement of severe unanticipated depreciations of Germany’s Deutsche In-
dustriebank IKB AG (being the first bank in Germany whose existence was
severely threatened by the adverse effects of the subprime crisis) lead to conta-
gion effects proxied as a change in lower tail dependence across German banks?
Secondly, did the rescue efforts of the state-owned KfW (IKB’s main share-
holder) as a lender of last resort to the IKB limit or reverse these contagion
effects?

The results show that significant contagion effects could be detected in
the German banking sector after those announcements of crisis at IKB that
were not accompanied by immediate bailout announcements by KfW. After
the final bailout of IKB, lower tail dependence was effectively reduced while
at the same time tail independence increased significantly. This shift in tail
dependence indicates that the bailout announcement did not restore the pre-
crisis dependence structure, but rather only decreased the likelihood of a joint
crash of bank stocks.
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1 Introduction

Contagion effects between banks have been a field of research since the 1930s

when bank failures occured in a domino-like fashion (see e.g. Calomiris and

Mason, 1997, for a study of bank failures during the Great Depression). In the

context of bank contagion, one usually distinguishes between bank runs and

bank panics with the former being confined to one specific bank and the latter

being an irrational and indiscriminate withdrawal of deposits from all banks

(see Bhattacharya and Thakor, 1993; Kaufman (1994) describes this irrational

form of a bank panic as pure contagion). More generally, bank contagion can

also be defined as a transmission of information within the banking industry

(see e.g. Gorton, 1985; Bessler and Nohel, 2000; Akhigbe and Madura, 2001).

Aharony and Swary (1983) define noisy (or firm-specific) bank contagion as

an adverse effect of a bank failure on banks due to correlations between banks

whereas pure contagion is caused by problems which are uncorrelated across

banks.

The existence of these contagion effects in banking is often explained by

the presence of information asymmetries between banks and its stakeholders.

As a single bank usually shares certain characteristics with it’s competitors

(e.g. a similar customer base, credit portfolio or syndicated corporate loans),

adverse effects on the bank could also implicate adverse effects on other banks

and possibly other industries. Due to information asymmetries between banks

and stakeholders, however, the latter might not be able to distinguish between

affected and unaffected banks withdrawing deposits and repricing stocks in-

discriminantly (see Bessler and Nohel, 2000). It is this danger of an irrational

bank panic (possibly leading to a systemic risk) causing considerable costs to

the financial sector that is often named as a justification for a state’s involve-

ment as a lender of last resort and the necessity for regulation in banking (see

e.g. James, 1991; and Goodhart and Huang, 2005).

Methodically, contagion effects in banking have often been studied by com-

puting abnormal stock returns (see e.g. Akhigbe and Madura, 2001; Gropp

and Moerman, 2004; Kabir and Hassan, 2005). In these studies, contagion

is presumed to be present if negative abnormal returns or increased volatility

can be detected in the post-crisis period after the event that is supposed to

be causing the bank panic. In addition to this, some authors have tried to

use extreme value theory to estimate the number of co-exceedances in order
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to isolate contagion effects across banks (see Gropp and Moerman, 2004; and

Gropp and Vesala, 2004). Simultaneously to the analysis of bank contagion,

a different branch of research has concentrated on analysing contagion effects

between financial markets in times of crisis (like e.g. in the Asian crisis of

1997). In this branch of research, early works concentrated on studying cor-

relations between stock market indices (see e.g. Forbes and Rigobon, 2002)

whereas recent work has focused on substituting a correlation-based analysis

by a more general copula-based approach (see e.g. Rodriguez, 2007 and Chen

and Poon, 2007).

The aim of this paper is to propose a new methodical framework for the

analysis of bank contagion. By combining well-known event study and cop-

ula methodology, the framework proposed in this paper allows for an analysis

of bank contagion that directly assesses the changes of dependencies between

banks instead of proxying contagion via abnormal returns. Furthermore, in

the empirical part of this paper, I focus on detecting contagion effects and

effects by bailout announcements for the near-collapse of German Deutsche

Industriebank IKB AG (IKB) as a result of the subprime crisis. Although sev-

eral previous studies have focused on contagion effects in banking (see e.g. De

Bandt and Hartmann, 2001, for a comprehensive overview of empirical stud-

ies), the effects of a state’s involvement as a lender of last resort on banking

contagion have only scarcely been analysed in empirical studies. To the best

knowledge of the author, this paper is the first one to analyse changes in the

dependence structure of banks around bailout announcements. More precisely,

the empirical study given in this paper tries to answer two questions: Firstly,

did the announcement of severe unanticipated depreciations of Germany’s IKB

(being the first bank in Germany whose existence was severely threatened by

the adverse effects of the subprime crisis) lead to contagion effects across Ger-

man banks? Secondly, did the rescue efforts of the state-owned Kreditanstalt

fr Wiederaufbau (KfW), IKB’s main shareholder, as a lender of last resort to

the IKB limit or reverse these contagion effects?

To answer these questions, abnormal stock returns are computed in a first

step from a market model with standard event study methodology for all Ger-

man banks listed in the DAX stock index. In a second step, contagion between

banks is parameterised by two concepts based on copulae: Firstly, a convex

combination of parametric copulae with different tail dependence character-

istics is fitted to the abnormal returns with contagion being indicated by an
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increase in the coefficient of the lower tail dependent Clayton copula. Sec-

ondly, the extension of the well-known bivariate tail dependence coefficient to

multivariate copulae proposed by Schmid and Schmidt (2007) is computed for

the data to examine changes directly in the coefficient between announcements

by the IKB and the KfW.

The contributions of this article are numerous. Firstly, this paper extends

the ongoing work on the empirical analysis of bank contagion by examining

the success of bailouts in reversing contagion effects. By combining well-known

event study and state-of-the-art copula methodology, this paper presents a new

framework for directly assessing the impact of contagion and bailouts on the

dependencies between banks. Furthermore, the results in the empirical study

show that contagion could be observed in the period after the announcements

of severe losses at IKB. In addition to this, the state’s announcements of a

bailout did not simply reverse the changes in the dependence structure but

lead to a persistent shift from lower tail dependence to tail independence be-

tween German banks indicating that bailout announcements are successful in

decreasing the probability of extreme joint downward movements of returns

while leaving the probability of extreme joint upward movements unchanged.

The remainder of this article is structured as follows. Section 2 discusses

the theory on contagion effects and bailouts. In section 3, the methodology and

model specifications are described. Section 4 exhibits the data and presents

the empirical findings. Concluding remarks are given in Section 5.

2 Bank contagion and lenders of last resort

Announcements of adverse effects on a bank (be they illiquidity, insolvency

or impending failure) can cause both a rational information effect as well as

irrational pure contagion. The former is presumed to be caused by a correct

measurement of the direction and strength of the correlation between the asset

and loan portfolios of the failed bank and its competitors (see Diamond, 1984,

1991; and Bessler and Nohel, 2000). If this measurement by the economic

agents is not correct, an indiscriminate repricing of the bank’s shares and

bank panics jointly known as the phenomenon of pure contagion will ensue.

Contagion effects following bank failures have been discussed at great

length in literature (see Kaufman, 1994, for a summary). Moreover, there ex-

ists a vast literature on the theory of the propagation channels for contagion ef-
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fects with interbank lending, common customer bases and payments/settlements

systems being considered to be the prime causes of (rational) contagion (see

Allen and Gale, 2000; Freixas et al., 1998; Bessler and Nohel, 2000; and Good-

hart and Huang, 2005). Concerning the economic consequences, pure conta-

gion is widely regarded to be more dangerous to the stability of the financial

system as all banks are affected by the adverse effect irrespective of their spe-

cific portfolio. Consequently, the possibility of a market failure manifested in a

bank panic, i.e. pure contagion, is often stated as the fundamental justification

for a state’s intervention as a lender of last resort (see Bagehot, 1873; Lerrick

and Meltzer, 2003; and Goodhart and Huang, 2005). In the view of some

authors, systemic risks can even be considered to be one of the fundamental

reasons for the existence of central banking (see Gorton and Huang, 2006).

Most of the empirical work on banking contagion finds that rational con-

tagion effects seem to prevail while pure contagion seems to be the exception.

One explanation for the little empirical evidence for the existence of pure

contagion after bank failures is the notion that contagion effects were lim-

ited by the actions undertaken by states as lenders of last resort (see Hasman

and Samart́ın, 2008). From this, one could hypothesise that rescue measures

made by lenders of last resort have been successful in preventing or reversing

pure contagion. Until now, however, only little empirical work has focused

on analysing the success of rescue measures by the state acting as a lender

of last resort. One of the few examples can be found in Butkiewicz (1995),

where an initial reversion of contagion effects is observed for the time of the

Great Depression. Similar results, namely positive abnormal returns of banks,

are found by Yorulmazer (2008) where the effects of the bank run at North-

ern Rock and the subsequent bailout announcement by the Bank of England

are analysed. The empirical analysis there, however, is based purely on com-

paring abnormal returns of British banks. As bank contagion is regularly

interpreted as a change of dependencies between banks, an empirical analy-

sis of contagion and bailout announcements should ideally be based on some

operationalisation of stochastic dependence. This analysis of the dependence

structure, however, should only be based on filtered returns estimated from

a market model in order to eliminate a possible bias induced by the market

return or conditional heteroscedasticity. Moreover, conventional event stud-

ies like Yorulmazer (2008) usually only consider small time windows around

events. In case market reaction to the event is lagged or information on the
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event was available beforehand, small time windows can thus lead to biased

results especially when analysing the dependence structures of (abnormal) re-

turns thus requiring the analysis of longer time periods around events.

Though interesting in its own, this paper will concentrate neither on the

mechanisms of propagation nor on a separation of rational and irrational con-

tagion effects. Instead, the empirical analysis will focus on the success of rescue

actions undertaken by the state as a lender of last resort with respect to re-

versing overall banking contagion parameterised by dependence in the lower

tails of the banks’ return distributions. The reason for this approach is that

the decision by a state to act as a lender of last resort will often be influenced

by political considerations. In a situation of a heated public discussion and

panicky investors, the state’s decision will thus often be made regardless of the

type of contagion effects the banking industry is experiencing. Nevertheless,

pure contagion effects will be presumed to be present due to the state’s role as

both a lender of last resort and a regulating authority. If the state is in pos-

session of near-complete information on the correlations between the banks’

portfolios due to its regulating function, the state will act as a lender of last

resort only in the presence of the more dangerous pure contagion.

3 Methodology

3.1 GARCH-filtering and abnormal returns

The analysis of the contagion effects in this paper will be based on the daily

stock returns of German banks. This approach follows several other studies

like e.g. Bessler and Nohel (2000), Akhigbe and Madura (2001), Lau and

McInish (2003), Kabir and Hassan (2005) and Yorulmazer (2008) in which

different market models of stock returns are estimated. Different approaches

like e.g. computing metrics like distances to default as it is done in Gropp and

Moerman (2004) are not considered due to two reasons: First, transmitted

adverse effects will always result in a devaluation of a bank, and thus, the

adverse effect should be reflected in a repricing of the bank’s stock. Second,

the use of additional data from the banks’ financial statements would require

breaking down quarterly into diurnal data. Such methods (like e.g. cubic

spline interpolation, see Gropp and Moerman, 2004) can only be seen as coarse

approximations thus introducing an unnecessary bias in the data.

In contrast to the aforementioned papers, this paper proposes a new frame-
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work for detecting contagion effects and market reactions to bailout announce-

ments. Instead of simply comparing abnormal returns, copula functions are

fitted to abnormal returns in order to analyse the dependence structure of a

struggling bank’s competitors. To minimise the effects of the market return

on the banks’ stock returns, abnormal returns rather than observable returns

(like it is done e.g. in Rodriguez, 2007) are used. Abnormal returns are esti-

mated from a market model that includes the German stock index DAX as a

proxy of the market return and the daily Euribor-1-month reference rate.

A stylised fact about financial data is the presence of conditional het-

eroscedasticity in stock returns. As the presence of conditional heteroscedastic-

ity could bias the results and as the copula models described below require the

input of i.i.d. data, I fit ARMA-GARCH models to the univariate marginals to

account for time-varying volatility. In particular, I model the stochastic pro-

cess (rt)t∈Z of the log-returns for each bank as an ARMA(p1,q1)-GARCH(p2,q2)

process with

rt = µt + εt

µt = µ+

p1∑
i=1

φi(rt−i − µ) +

q1∑
j=1

θjεt−j

εt = σtεt (1)

σ2
t = α0 +

p2∑
i=1

αi(|εt−i|+ γiεt−i)
2 +

q2∑
j=1

βjσ
2
t−j

and α0 > 0, αi, βj ≥ 0 for all i = 1, 2, ..., p2 and j = 1, 2, ..., q2 and εt being

a SWN(0,1)-process (see Bollerslev, 1986, and Bollerslev et al., 1992). The

choice of distribution for the innovations εt as well as the exact specifications

for the volatility models and the ML-estimates for the parameters are given

later in the presentation of the results. After the models have been estimated,

the log return ri,t of the ith univariate return series at time t is filtered accord-

ing to

r̂i,t :=
ri,t − µ̂i,t
σ̂i,t

, i ∈ N, t = 1, 2, ..., T (2)

After the filtered returns have been computed, we need to exclude shocks

common to all market participants that might bias the results. Therefore, it

is assumed that the filtered log returns are generated by the following market

model:

r̂i,t = αi + βirM,t + γiIt + εi,t, (3)
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with i = 1, 2..., n representing n banks whose dependence structure will be

analysed, t = 1, 2, ..., T being a time index, rM,t being the (GARCH-filtered)

return on the market portfolio proxied by the German DAX stock index on day

t, It being the daily Euribor-1-month reference rate and εi,t being a random

disturbance term for bank i at time t.

3.2 Some preliminary copula theory

In order to detect contagion effects and possible remedies induced by the lender

of last resort, the dependence structure inherent in the abnormal filtered re-

turns r̂i,t of a set of banks is modelled by the use of copula functions. In the

following, some basic results on copulae will be reviewed.

Consider the marginal distributions of a random vector X of length n to

be previously specified, the process of aggregating these distributions to their

joint distribution is reduced to choosing or estimating a copula that reflects

the dependence structure between the marginals. The mathematical basis for

the analysis of copulae was founded by Sklar (1959) and Hoeffding (1940). In

the following, a basic definition of a copula and Sklar’s theorem are described

(for a more detailed description of copulae see Nelsen, 2006 or Joe, 1997).

Let Fi be the ith marginal cumulative distribution function (cdf) of the ran-

dom vector X. An n-dimensional copula is a n-variate cumulative distribution

function C : [0; 1]n → [0; 1] with uniformly distributed marginals (hereafter

called n-copula). The central result in copula theory is Sklar’s theorem which

ensures the existence of a unique copula under relatively weak conditions:

Theorem 1 (Sklar) Let F be a joint cumulative distribution function with n

marginals Fi. Then there exists an n-dimensional Copula C such that for all

x ∈ R̄n,

F (x1, x2, ..., xn) = C(F1(x1), F2(x2), ..., Fn(xn)). (4)

If all marginals Fi are continuous, then the Copula C is unique.

Vice versa, if an n-Copula C and n cumulative distribution fuctions Fi are

given then (4) yields an n-variate cumulative distribution function with marginals

Fi.

In contrast to traditional concepts of dependence like Kendall’s Tau or Spear-

man’s Rho, a copula captures the whole dependence between the marginals

(see Chen and Huang, 2007) thus further explaining the surge in interest in

copulae.
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As the copula directly describes the dependence structure inherent in a

random vector, it is not surprising that certain measures of dependence and

concordance are closely linked with the copula concept. The most important

dependence measure with respect to the analysis of financial contagion is the

concept of asymptotic tail dependence which will be described in detail in the

following. Tail dependence can synonymously be described as the extremal

dependence of two random variables, i.e. the dependence in the tails of a

bivariate distribution (see McNeil et al., 2005). For our purposes, asymptotic

tail dependence is especially well suited for the analysis of financial contagion

because it allows a differentiated analysis of the symmetric or asymmetric

extremal dependence between two markets, or, as described by Rodriguez

(2007), their propensity to crash (and/or to boom) together.

Definition 3.1 (Upper tail dependence) Let X1 and X2 be two random

variables with cdfs F1 and F2. Then the upper tail dependence coefficient of

the random vector (X1, X2) is defined as (see McNeil et al., 2005)

λU := λU(X1, X2) = lim
u↑1

P
{
X2 > F−1

2 (u)|X1 > F−1
1 (u)

}
(5)

provided that a limit of λU exists in [0; 1] with F−1
i being the quantile function

of the cdf Fi for i ∈ {1; 2}. For λU ∈ (0; 1] the random variables are said to

be upper tail dependent. For λU = 0, X1 and X2 are said to be asymptotically

upper tail independent.

As said earlier, the notion of tail dependence is strongly linked with the concept

of copulae. To be precise, for a bivariate random vector with continuous

marginal cdfs F1 and F2, the coefficient of upper tail dependence (if it exists)

can be expressed in terms of the underlying (unique) copula C:

λU = lim
u↑1

1− 2u+ C(u, u)

1− u
(6)

Analogously, the coefficient of lower tail dependence is defined as

Definition 3.2 (Lower tail dependence)

λL := λL(X1, X2) = lim
u↓0

P
{
X2 ≤ F−1

2 (u)|X1 ≤ F−1
1 (u)

}
(7)

again provided that a limit of λU exists in [0; 1]. For λU ∈ (0; 1] and λU = 0

we have lower tail dependent and asymptotically lower tail independent random

variables respectively.
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If the limit exists and F1 and F2 are continuous, we can express the coefficient

in terms of the copula:

λL = lim
u↓0

C(u, u)

u
(8)

The definition of lower tail dependence given above only allows a bivariate

comparison of random variables. In addition to the bivariate models explained

later I make further use of a generalisation of the notion of lower tail depen-

dence to multivariate random variables that has been proposed recently by

Schmid and Schmidt (2007). A multivariate measure for lower tail depen-

dence is given by

Definition 3.3 (Multivariate lower tail dependence, Schmidt and Schmid)

λML := lim
p↓0

ρ(p) = lim
p↓0

n+ 1

pn+1

∫
[0,p]n

C(u)du (9)

with

ρ(p) :=

∫
[0,p]n

C(u)du−
(
p2

2

)n
pn+1

n+1
−
(
p2

2

)n (10)

being an n-dimensional conditional version of Spearman’s rho for 0 < p ≤ 1.

Empirical estimators for λML and ρ(p) based on a sample of size T are given

by

ρ̂T (p) :=

{
1

T

T∑
t=1

n∏
i=1

(p− Ûi,t,T )+ −
(
p2

2

)n}
/

{
pn+1

n+ 1
−
(
p2

2

)n}
(11)

and

λ̂ML,T (p) := ρ̂T (k/T ) (12)

respectively, where Ûi,t,T are the pseudo-observations from the copula (see

Schmid and Schmidt, 2007; or McNeil et al., 2005) given by

Ûi,t,T :=
1

T
(rank(Xit) in Xi1, · · · , XiT ) (13)

and k ∈ {1, 2, ..., T} is a prespecified parameter.

In the following, the different copulae that are to be used in the empirical

study shall be briefly discussed. One of the most basic copulae is the Gaussian

copula given by the cdf

CΦ
n (u; Σ) = Φ

(n)
Σ (Φ−1(u1), ...,Φ−1(un)) (14)

9



with u =t (u1, u2, ..., un) ∈ [0; 1]n. It can be obtained by applying the inversion

method on an n-variate standard Gaussian distribution Φ(n) with correlation

matrix Σ and n univariate standard Gaussian distributions as marginals (see

Nelsen, 2006). For imperfectly correlated marginals the Gaussian copula CΦ
n

is tail independent (see e.g. Sibuya, 1960; and Resnick, 1987).

Similarly as the Gaussian copula can be derived from a multivariate Gaus-

sian distribution, the t-copula can be obtained from a (non-singular) n-dimensional

Student’s t-distribution Td(µ; Ω; ν) with density

f(x) =
Γ(ν+n

2
)

Γ(ν
2
)
√

(πν)n|Ω|

(
1 +

(x− µ)′Ω−1(x− µ)

ν

)−ν+n
2

, (15)

ν degrees of freedom, mean vector µ and dispersion matrix Ω (note that the

dispersion matrix does not equal the covariance matrix in this case, see De-

marta and McNeil, 2005). As copulae are invariant under strictly increasing

transformations of the marginals, we can obtain the t-copula from the stan-

dardised n-dimensional t-distribution Tn(0; Σ; ν) yielding

CTn (u; ν; Σ) =

∫ t−1
ν (u1)

−∞
...

∫ t−1
ν (un)

−∞

Γ(ν+n
2

)

Γ(ν
2
)
√

(πν)n|Σ|

(
1 +

x′Σ−1x′

ν

)− ν+n
2

dx,

(16)

with t−1
ν being the inverted cdf of a standard univariate Student’s t-distribution

with ν degrees of freedom. The t-copula is symmetrically tail dependent and

converges to the Gaussian copula for ν →∞.

Another symmetrically tail independent copula that will be implemented

in the empirical study is the Frank copula given by

CFn (u; δ) = −1

δ
log

(
1 +

∏n
i=1(exp(−δui)− 1)

(exp(−δ)− 1)n−1

)
, (17)

with parameter δ ∈ R+ (for some properties of the bivariate Frank copula see

Genest, 1987).

The aforementioned copulae exhibit tail independence (Gaussian and Frank)

and symmetric tail dependence (Student’s t), respectively. For the purpose of

capturing different patterns of tail dependence, the Gumbel copula which is

asymmetrically tail dependent (upper tail dependence and lower tail indepen-

dence) shall be considered in the empirical analysis as well. Its cdf is given

by

CGn (u;λ) = exp

−( n∑
i=1

−(log ui)
λ

) 1
λ

 , (18)
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where the parameter λ satisfies λ ≥ 1. Here, I use the standard definition

of the Gumbel copula (for a recursively defined definition that simplifies the

computation see Bouyé, 2003).

The last parametric copula exhibiting lower tail dependence that will be

considered in the empirical study is the Clayton copula (sometimes also called

the Cook-Johnson or Pareto copula, see Genest and MacKay, 1986; and Hutchin-

son and Lai, 1990). The Clayton copula is given by

CCn(u; θ) = (u−θ1 + · · ·+ u−θn − n+ 1)−1/θ, (19)

with θ ≥ 0 with the independence copula being the limiting case for θ → 0.

Parameter estimation for these copula functions is usually achieved by

Maximum-Likelihood with the marginals being specified either parametri-

cally or nonparametrically yielding the so-called Inference-for-margins (IFM)

method and canonical Maximum-Likelihood respectively. The ML-estimators

are consistent and asymptotically normal under some regularity conditions (see

Genest et al., 1995). The asymptotic behaviour of these estimators, however,

only holds for i.i.d. data used for estimating the copula parameters thus em-

phasising the need to apply GARCH-filters before modelling the dependence

structure.

3.3 Detecting contagion effects with copulae

Following Patton (2002), Jondeau and Rockinger (2006), Rodriguez (2007) and

Chen and Poon (2007) I try to capture any change in the dependence structure

of abnormal bank returns by analysing the changes in the parametric form and

the parameters of various copulae. Unlike these studies, however, I apply their

methodology in an event study to analyse changes in the dependence structure

between announcements of the IKB and its lender of last resort. To be precise,

I analyse the time-variation of the fitted copulae conditional on the set of given

past information represented by the sub-σ-algebra G. For a given date t and

an information set Gt := σ({ri,j|j = 1, 2, ..., t− 1}) for the ith bank, Sklar’s

theorem becomes

Ft(x1, x2, ..., xn|Gt) = Cn,t(F1,t(x1|Gt), F2,t(x2|Gt), ..., Fn,t(xn|Gt)|Gt) (20)

with Cn,t(u|Gt) being the n-dimensional conditional copula, Fi,t(xi|Gt) being

the conditional c.d.f. of the ith univariate marginal and Ft(x1, ..., xn|Gt) being

the joint c.d.f. of the random vector (see Patton, 2002 for an introduction into
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the theory of conditional copulae and the respective parameter estimation).

The merit of using abnormal returns rather than observed returns is that the

analysis of the dependence structure will not be biased by the influence of the

market return proxied by a stock index on the banks’ returns.

In the event study framework of this paper, I assume that the sub-σ-algebra

Gt ≡ Gpq = σ (Ω) is generated by the subset Ω := {ri,j|j = e1, e1 + 1, · · · , e2 − 1, e2}
containing all available information of the time window pq between two events

e1 and e2 where q = 1, 2, ... is the index of the time window.

The model for capturing changes in the dependence structure extends the

ideas of Rodriguez (2007) to detect changes in the parametric form of the

copula by estimating mixtures of different parametric copulae. It is common

knowledge that a convex linear combination of a finite set of copulae is again a

copula (see Nelsen, 2006). The analysis of the time-variance in the dependence

structure (restricted to a change in the parametric form) can thus be observed

in the changes in the weights of the convex combination over time. For each

time window pq, a convex combination

Cmix
n,pq(u; ν, ρ, δ, θ, λ|Gpq) ≡ πTpqC

T
n,pq(u; ν, ρ|Gpq) + πFpqC

F
n,pq(u; δ|Gpq) (21)

+ πCpqC
C
n,pq(u; θ|Gpq) + (1− πTpq − π

F
pq − π

C
pq)C

G
n,pq(u;λ|Gpq)

πTpq , π
F
pq , π

C
pq ∈ (0; 1) and πTpq + πFpq + πCpq ≤ 1

with πTpq , π
F
pq and πCpq being the weights of the Student’s t, Frank and Clay-

ton copula will be estimated. The parametric copula were chosen to cover

a maximal variety of tail dependence structures. In contrast to Rodriguez

(2007), I include the Student’s t copula at first in all convex combinations not

only because the Student’s t copula has been regularly identified in empirical

studies as the most flexible copula (see e.g. Kole et al., 2007 for a recent ex-

ample), but also because the Student’s t copula can capture both symmetric

tail dependence and tail independence as a special case (when it converges to

the Gaussian copula) so that we do not need to include a further summand in

(21).

In the next step, the goodness-of-fit of each configuration of the copula

mixture is assessed in order to prevent the models from overfitting the data

and to check the model specification. The first metric that will be used is

Akaike’s Information Criterion which is given by

AIC := 2k − 2L(η̂), (22)
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where k is the number of model parameters and L(η̂) is the maximised Loglike-

lihood at the estimate of the parameter vector η̂. Furthermore, goodness-of-fit

test procedures specially adapted to copula models can be employed for choos-

ing the optimal copula model. An example for such a metric is given by the

Cramér-von-Mises statistic

ξ = T

∫
[0;1]n

{
Cemp
n;T (u)− Cn(u, η)

}2
dCemp

n;T (u). (23)

which measures the distance between the parametric copula and the empirical

copula Cemp
n;T estimated from a sample of size T (see Fermanian, 2005, for an

early mentioning and Genest et al., 2008, for an extensive analysis). The

empirical version of ξ is given by (see Genest et al., 2008)

ξ̂ =
T∑
t=1

{
Cemp
n;T (ut)− Cn(ut, η)

}2
(24)

with ut being the t-th sample from the copula. For both metrics, the cop-

ula configuration yielding the lowest value will be considered to be optimal.

However, one has to be careful when using the GoF-metric in (24) as it does

not account for the number of parameters estimated thus possibly leading to

overfitting of the data.

After an optimal copula model has been found, I fit the optimal convex

combination of copulae to the abnormal filtered returns of each pair of the

initial distressed bank’s competitors before the initial and between subsequent

events. The null hypothesis then is that πCpq will increase for all pairs of

competitors after negative announcements while positive announcements con-

cerning a bailout by the lender of last resort will result in a decrease of the

parameters πCpq .

Furthermore, I estimate the measure for multivariate lower tail dependence

given by (12) in order both to extend the empirical study to a multivariate

analysis of possible contagion effects as well as to check the robustness of the

(bivariate) results. A summary of the complete framework is given below:

1. Choose the events e1, e2, · · · on which bank failures (or impending fail-

ures) and bailouts became publicised. Identify the first (critical) event

as t0.

2. Estimate the filtered returns r̂i,t from ARMA-GARCH-models to control

for heteroscedasticity and serial correlation.
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3. Estimate the market model r̂i,t = αi + βirM,t + γiIt + εi,t based on stock

returns ri,t observed in the time window [t0− 400; t0− 100] and compute

abnormal returns by the identity ARi,t := ri,t − α̂i − β̂irM,t − γ̂iIt.

4. Identify the optimal configuration of the copula model in each time win-

dow by the use of AIC and additional copula-GoF metrics.

5. Fit the optimal convex combination of copulae to all pairs of banks

excluding the initial contagious bank for the time window [t0 − 100; t0],

to which I will refer to as the pre-crisis period, and any other time window

with length≥ 50 between two events.

6. Conduct significance tests on the null hypothesis of constant parameters

between two events.

7. Compute the multivariate lower tail dependence coefficient given by (12)

for the pre-crisis and subsequent time windows.

In the following section, the data and chosen events are presented.

4 Data and empirical findings

4.1 Sample description and ARMA-GARCH-modelling

The data sample used in the analysis below consists of 638 daily observations of

the logarithmic stock returns of the IKB and the three largest publicly traded

German banks listed in the German DAX stock index, i.e. Deutsche Bank

AG, Commerzbank AG and Deutsche Postbank AG, covering the period from

January 3, 2006 to July 3, 2008. For all banks, returns are defined as the per-

centage logarithmic difference of the stock price, i.e. ri,t ≡ 100 · ln(Pi,t/Pi,t−1)

with Pi,t being the stock price of bank i at time t. All daily observations of the

stock prices were obtained from Thomson Financial Datastream. Following

Jondeau and Rockinger (2006) and Bartram et al. (2007) holidays are ex-

cluded from the data sample in order to eliminate spurious correlation. Table

1 gives some descriptive statistics for the unfiltered return series.

Insert Table 1 here

Over the whole sample period, all bank stock indices yielded negligible

mean daily log-returns. We can observe from the summary statistics that all
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returns series are skewed with IKB and Deutsche Postbank being leptokurtic

and the log-returns of the remaining banks being platykurtic. From this we

can conclude that all return series are not normally distributed. The Jarque-

Bera test confirms this conjecture by rejecting the hypothesis of a normal

distribution for all five series. Note the very high extrema (-27% and +26%) of

the returns of IKB. Furthermore, the return series are tested for ARCH effects

with Engle’s LM test and serial correlation with the Ljung-Box test. The LM

test of no ARCH effects is rejected for all five series indicating the presence

of conditional heteroscedasticity in the data. The Ljung-Box could not be

rejected for all banks. Finally, the Bravais-Pearson correlation coefficients for

the return series indicate strong linear dependence between all five banks.

As the LM-test was rejected for all bank return series, the univariate

marginal distributions are modelled according to the ARMA(p1,q1)-GARCH(p2,q2)-

model described in (1) and fitted by Maximum-Likelihood. For the innovations

εt several different distributions have been proposed in the literature. For ex-

ample Rodriguez assumes the innovations to be normally distributed, whereas

Patton (2002) and Chen and Poon (2007) use a skewed Student’s t distribution.

In this study, the normal, skewed normal, Student’s t and skewed Student’s t

distribution were considered as the conditional distribution of the innovations.

The lags and distributions of the innovations necessary to remove GARCH-

effects as well as the parameter estimates and results of the LM, Ljung-Box

and Jarque-Bera tests on the filtered returns are given in Table 2.

Insert Table 2 here

The test statistics show that serial correlation and the observed ARCH

effects could be removed from all filtered return series with all test results

being significant at the 1% significance level.

4.2 Abnormal returns

In the analysis in this paper, I concentrate on three major events on which

announcements concerning the financial stability of IKB were made by either

IKB or KfW:

• Initial crisis and immediate bailout (July 30, 2007): IKB announces that

funding of the conduit “Rhineland Funding” is endangered and issues a

profit warning. State-owned KfW, IKB’s main stakeholder, provides an

8.1 billion Euro liquidity line for IKB.
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• Second crisis (November 28, 2007): KfW announces that IKB requires

another 2.3 billion Euro to cover its risks. The German government

refuses to issue a debt guarantee that would have supported IKB and

KfW.

• Final Bailout (March 28, 2008): KfW and IKB’s remaining stockholders

agree on a recapitalisation amounting to 1.5 billion Euro.

To estimate abnormal returns, the parameters of the market model given by

(3) are estimated by OLS using 300 observations from the time window [t0 −
400; t0 − 101] with t0 being July 30, 2007. The parameter estimates are then

used to compute abnormal daily returns for all banks for the time windows

[t0 − 100; t0 − 1] (refered to as the pre-crisis period), [t0; t0 + 86] (being the

period after first news on IKB’s losses were publicised and KfW announced its

initial bailout), [t0 + 87; t0 + 168] (refered to as the crisis period) and finally

[t0 + 169; t0 + 237] (refered to as the post-crisis period). An overview of the

announcement dates and the time windows of interest are shown in Figure 1.

Insert Figure 1 here

In a first step, cumulative abnormal returns are estimated in the usual

fashion over a 3-day time window centered around each announcement date

for all banks excluding IKB. Significance of the obtained results is tested using

standardised residual t-tests (see e.g. Fee and Thomas, 2004, for a similar

approach and McWilliams and McWilliams, 2000, for a description of the test

procedure). The results are reported in Table 3.

Insert Table 3 here

For the first announcement date (the advent of the crisis), all banks with

the exception of Deutsche Bank earn (insignificant) negative abnormal returns.

As all banks earn positive or insignificant negative abnormal returns, one can

argue that KfW’s initial announcement of a bailout was partly successful in

preventing contagion. Inconsistent with the hypothesis of increased contagion,

however, significant positive abnormal returns can be found for Deutsche Bank

and Commerzbank on the second announcement day while Deutsche Postbank

earned insignificant positive abnormal returns. Consistent with the hypothesis

of a reversion of contagion effects, significant (insignificant) positive abnormal

returns could be observed for Commerzbank (Deutsche Postbank) after the
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third announcement day while Deutsche Bank earned an insignificant nega-

tive abnormal return. Overall, one can see that these results are no indication

for significant sector-wide contagion effects while the hypothesis of positive

abnormal returns after the bailout cannot be rejected. As stated earlier, an

analysis of contagion effects that is solely based on abnormal returns on se-

lected trading days can yield only evidence on short-term market comovements

rather than on changes in the sector’s dependence structure. Moreover, a sim-

ple comparison of abnormal returns suffers from the problem that we need

to (arbitrarily) decide which abnormal returns should be considered extremal

(and thus resulting from contagion). Therefore, to assess the question whether

the announcements by IKB and KfW resulted in persistent changes of the ex-

tremal dependence inherent in the German banking sector, the copula models

described above are fitted to the abnormal returns.

4.3 Detecting contagion effects by the use of copulae

Following Rodriguez (2007), I model contagion effects as a change in lower tail

dependence between IKB’s rivals. In order to decide which convex mixture

of parametric copulae is best suited for modelling the dependence structure, I

first estimated each possible mixture of three or four parametric copulae and

computed the corresponding Akaike’s Information Criterion.

Insert Table 4 here

The results given in Table 4 show that the Clayton-Frank-Gumbel mixture

is the best choice in almost all cases according to Akaike’s criterion while the

more flexible full mixture model which includes the Student’s t copula seems

to overfit the data (see e.g. Rodriguez, 2007, or Dias and Embrechts, 2008,

for a similar use of AIC). Additional Goodness-of-Fit tests using a Cramér-

von-Mises criterion proposed by Genest et al. (2008) which is based on a

comparison between the null hypothesis and the empirical copula only yielded

inconclusive results. As the metric proposed by Genest et al. (2008) does

not account for the number of parameters, however, and as overfitting is a

severe problem in this setting considering the dynamic range of the number of

parameters used in the models, AIC is much more favorable than GoF-metrics

for model selection. Therefore, only the Clayton-Frank-Gumbel mixture will

be considered in the following.

17



In the next step, I fitted the Clayton-Frank-Gumbel mixture to each time

frame and each pair of return series to identify any change in the bivariate de-

pendence structure of German banks. Results for the Clayton-Frank-Gumbel

models are presented in Table 5.

Insert Table 5 here

The bivariate results show that between the pre-crisis period and the time

after the initial crisis and bailout, no clear sign of sector-wide contagion can

be found. While lower tail dependence (as indicated by the coefficient πC of

the Clayton copula) between Deutsche Bank and Deutsche Postbank increases

significantly, the coefficient decreases for Deutsche Bank and Commerzbank

as well as Commerzbank and HypoVereinsbank. These nonuniform changes in

lower tail dependence could be a result of the fact that the initial announce-

ment of financial crisis at IKB was immediately accompanied by the bailout

announcement by KfW thus averting sector-wide contagion.

Between the second and third time window, i.e. the time before and after

the second announcement of severe financial crisis at IKB, results show an un-

equivocal picture: For all combinations of Deutsche Bank, Deutsche Postbank

and Commerzbank, lower tail dependence rises significantly at the 5%-level.

Consequently, the bailout by state-owned KfW was economically justified as

the probability of a joint crash of German banks had increased sharply af-

ter the announcement by IKB (which in this case was not accompanied by

an immediate bailout announcement). Moreover, the increases in lower tail

dependence all coincide with decreases in upper tail dependence as indicated

by the coefficient πG of the Gumbel copula. This result clearly underlines the

dramatic change in the dependence structure that took place in the German

banking sector after the second announcement of crisis.

After the final bailout, the results given in Table 5 show that for all banks

lower tail dependence, i.e. the propensity of German banks to crash together,

decreases. This is consistent with the hypothesis of contagion being success-

fully reversed as a result of KFW’s bailout of IKB. In addition to this, in

all bivariate models the decrease in lower tail dependence is accompanied by

a significant increase in the coefficient πF signalling tail independence. Eco-

nomically, this means that after the final bailout announcement, joint extreme

upward movements of German banks’ abnormal returns became less likely

than before the advent of the crisis. In other words, the instrument of a
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bailout does not seem to be suitable for completely reversing contagion but

rather seems to transform lower tail dependence into tail independence. This

finding is consistent with the economic intention of a bailout as it should not

increase the sector’s propensity to boom together but should rather be limited

to decreasing the probability of a joint crash.

4.4 Robustness checks

In order to extend the described bivariate comparisons to a multivariate anal-

ysis of the changes in the dependence structure of the German banking sector,

I estimate the coefficient of multivariate lower tail dependence given by (9)

based on the abnormal returns of Deutsche Bank, Commerzbank and Deutsche

Postbank. The parameter k in (9) is chosen to be 40. Unreported results with

different parameter choices only resulted in marginal shifts in the level of the

estimates thus leading to the assumption that this particular choice of the

parameter did not alter the estimates of the coefficient of multivariate lower

tail dependence. Results are given in Table 6.

Insert Table 6 here

From Table 6 one can see that the main results from the previous analysis

also hold in the multivariate setting using a different methodology. After a

first sharp increase in lower tail dependence after the crisis announcement,

contagion effects slowly decrease until the final bailout announcement after

which lower tail dependence is slightly reduced. Again the empirical results

are consistent with both the hypothesis of contagion effects increasing after

the announcement of crisis at IKB and the hypothesis that the bailout by KfW

was (partly) successful in reducing contagion effects.

As event studies are often biased by confounding events (especially when

using large time windows around events), we need to check the robustness

of the previous results with respect to a sub-sample exluding confounding

events that occured during the four time windows. I therefore identified 16

confounding events of the three banks from the internet archive of the Financial

Times comprising e.g. interim reports, announcement of mergers and profit

warnings that were related to the subprime crisis. Following Foster (1980)

I build a sub-sample excluding symmetric three-day intervals around each

confounding events from the initial sample (if a confounding event occured

at any one of the three banks, the interval around the event was eliminated
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from all banks’ return series). In total, 44 trading days are excluded from

the initial sample of filtered abnormal returns. In the next step, the bivariate

copula models as well as the coefficient of multivariate lower tail dependence

are estimated from the sub-sample. Results for the bivariate models are given

in Table 7.

Insert Table 7 here

The given results show that the analysis of lower tail dependence is robust

even when confounding events that were not related to IKB’s announcement

are excluded from the sample. This finding supports the notion that indeed the

announcements by IKB and KfW were responsible for the changes in the de-

pendence structure of the German banking sector. Additionally, the exclusion

of confounding events did not change the results with respect to upper tail de-

pendence. Thus, the finding of a persistent change from upper tail dependence

to symmetric tail independence after the bailout holds for the sub-sample as

well. In addition to the bivariate models, I also estimate the coefficients of

multivariate lower tail dependence for the sub-sample. Results are given in

Table 8.

Insert Table 8 here

Finally, the analysis of the coefficients of multivariate tail dependence given

in Table 8 shows that the previous results remain almost unchanged by the

exlusion of confounding events. Moreover, the reduction of contagion effects

after the bailout is even more pronounced than in the previous analysis thus

underlining the robustness of the given results.

5 Conclusion

In this paper a new framework for detecting effects of bank contagion and

bailouts by the use of conventional event study and copula methodology was

proposed. By estimating GARCH-filtered abnormal returns instead of ob-

served returns, the dependence structure inherent in a banking sector is not

biased by conditional heteroscedasticity in the variances or the influences of

common factors like e.g. the market return. By using copula methodology in-

stead of simply comparing abnormal returns, the contagion and bailout effects

can be analysed directly as a change of the dependence structure.
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The empirical study in this paper analysed the changes in the dependence

structure of German banks around announcements of financial crisis of IKB

as a result of the subprime crisis and the subsequent bailout by KfW. The

results show that significant contagion effects could be detected in the Ger-

man banking sector after those announcements of crisis at IKB that were not

accompanied by immediate bailout announcements by KfW. After the final

bailout of IKB, lower tail dependence was effectively reduced while at the

same time tail independence increased significantly. All given results also hold

in a multivariate setting and are robust to an exclusion of confounding events.

The described shift in tail dependence indicates that the bailout announce-

ment did not restore the pre-crisis dependence structure, but rather only de-

creased the likelihood of a joint crash of bank stocks. One topic not addressed

in this paper is the question which factors of the banking system determine

the likelihood of contagion effects and the success of bailouts. To answer this

question, more examples of bank contagion and bailouts need to be analysed

in future research complemented by cross-sectional analyses.
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