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Abstract

This paper decomposes the popular risk measure Value-at-Risk (VaR) into one jump-

and one continuous component. The continuous component corresponds to general market

risk and the jump component is proportional to the event risk as de�ned in the Basel II

accord. We �nd that event risk, which is currently not incorporated into most banks�

VaR models, comprises a substantial part of total VaR. It constitutes 30% of the risk for

a portfolio of small cap stocks but less than 1% for a portfolio of large cap stocks. The

national supervising agency in each membership country is advised by the Basel rules

to add an additional capital charge to a bank whose models do not capture event risk.

The large variation in event risk, also found across 10 individual stocks, suggests that an

approach that varies the capital surcharge, based on the type of asset, should be used by

the supervisors.

Keywords: Value-at-Risk, Event Risk, NIG distribution, Jumps

JEL G21, G28, C22
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1 Introduction

Because of its conceptual simplicity and prominent role in the Basel II accord (Basel, 2006)

Value-at-Risk (VaR) is today one of the leading measures of market risk. VaR summarizes

the market risk into a single number that expresses the largest expected loss in an investor�s

portfolio for a given level of con�dence and target horizon. There is currently a very active

literature concerning the estimation and evaluation of VaR models, see for example Bali

et al. (2008), Kuester et al. (2006) as well as Engle and Manganelli (2004).

This paper is the �rst to decompose Value-at-Risk into one jump- and one continuous

component. The continuous component corresponds to general market risk and the jump

component is suggested to measure the event risk, as de�ned in the Basel II accord (BIS

2006). The decomposition is achieved by a new model for �nancial returns that allows

for discontinuous price movements (jumps) and time variation in the �rst four conditional

moments.

Models with time varying higher moments have been proposed before by among others

Hansen (1994), Harvey and Siddique (1999), Mittnik and Paolella (2003), Bali et al. (2008)

as well as Lanne and Saikkonen (2007), however these models do not allow for jumps in

the price process. The two existing models that are most closely related to the model

we propose is the NIG-GARCH model of Forsberg and Bollerslev (2002) and the GARJI

model of Maheu and McCurdy (2004). Our model nests both of these previous models as

special cases and can be viewed as the NIG-GARCHmodel with an added jump component

or as the GARJI model with a changed distribution assumption.

The motivation to change the distribution assumption in Maheu and McCurdy (2004)

stems from the fact that their model can only accommodate non-zero skewness and excess

conditional kurtosis by the jump intensity parameter. This means that their model will

overestimate the jump component if the true price process has a continuous part with

non-zero skewness and/or excess kurtosis.

The rules in the Basel II framework apply an additional capital charge when a bank�s
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internal model used for VaR calculation cannot properly capture the event risk. They

further state that few models used today are able to achieve this. Our model is of interest

to banks since it incorporates the event risk and thus allows for VaR modelling without

additional capital charges. We also believe that our model used in conjunction with our

proposed quantitative measure of event risk is of interest to regulators since it allows for

a direct measurement of the event risk in an asset. This should be a valuable tool when

determining the magnitude of the additional capital charge added to models that cannot

capture event risk. We show empirically that the proportion of event risk varies greatly

between di¤erent assets. The total VaR of a portfolio of the 30% smallest companies of

the market index is found to consist of about 1/3 event risk. In contrast to this, a portfolio

of the 30% largest companies has an event risk proportion less than 1%. This suggests

that the regulatory surcharge should di¤erentiate between assets and not be a constant

scale factor that is independent of the asset�s actual event risk.

The rest of the paper proceeds as follows. Section 2 describes the econometric model

and section 3 gives an overview of Value-at-Risk and proposes a measure for event risk.

Section 4 presents the data and section 5 displays the results. Section 6 concludes.

2 Models for equity returns

There is now a large body of literature1 that documents the presence of discontinuities in

the sample paths of �nancial returns. It is also known (see Maheu and McCurdy (2004)

and Andersen et al., 2007) that news that give rise to jumps in prices take shorter time to

dissipate than price movements due to �normal�news. Consequently, it may be necessary

to use two components, one measuring the impact of normal news and one measuring the

impact of more extreme events, to correctly measure �nancial risk. Explicit modelling of

the jump component (that captures the extreme events) is shown important in variance

forecasting by Maheu and McCurdy (2004), Andersen et al. (2007) and Lanne (2007).

Further there is evidence of time variation not only in the conditional variance but also
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in the conditional skewness and kurtosis of �nancial returns. Models that capture this

higher order dependence have been suggested by for example Hansen (1994), Harvey and

Siddique (1999, 2000) and recently in a Value-at-Risk setting by Bali et al. (2008) and

Wilhelmsson (2009). Below we will develop a model that allows for all the empirical

features of �nancial data described above.

2.1 The GARJI model

Maheu and McCurdy (2004) suggest an interesting model, called the GARJI model, where

the return consists of a sum of a Poisson distributed number of jumps and a continuous

residual. The continuous residual is given an interpretation as a return shock due to normal

news and more extreme news are picked up by the Poisson jump component. Since the

return is modelled as a sum of these two components, both components must be drawn

from a distribution that is closed under convolution, such as the normal, in order to get a

closed form expression for the conditional distribution of the returns.

We propose to change the normality assumption in Maheu and McCurdy (2004) be-

cause under this assumption the model can only accommodate non-zero conditional skew-

ness and excess conditional kurtosis by the jump intensity parameter2. This means that

the original GARJI model will overestimate the jump component if the true price process

has a continuous part with non-zero skewness and/or excess kurtosis. We propose to in-

stead use the normal inverse Gaussian (NIG) distribution both for the error term of the

continuous part and as a distribution for the jump size. The NIG distribution is very �ex-

ible in accommodating varying levels of skewness and kurtosis. Furthermore, it is closed

under convolution for �xed values of the skewness and kurtosis parameters. Changing the

distributional assumption gives us a more �exible model while at the same time retaining

the analytical properties of the original GARJI model.
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2.2 The Normal Inverse Gaussian distribution

The density function of the NIG distribution using the location scale invariant parameter-

ization, �� = �� and �� = ��, is given by

f
�
x; ��; ��; �; �

�
=

��

��
exp

�q
��2 � ��2 + �� (x� �)

�

�
q

�
x� �
�

��1
� (1)

K1

�
��q

�
x� �
�

��
;

with 0 �
������ < ��, � > 0 and q (z) =

p
1 + z2. Here, K1 (�) is the modi�ed Bessel function

of third order and index one. The parameter �� controls the kurtosis of the distribution

and �� the asymmetry. The location and scale of the distribution is decided by � and �,

respectively. For �nancial applications of the NIG distribution see e.g. Eberlein and Keller

(1995), Barndor¤-Nielsen (1997) as well as Forsberg and Bollerslev (2002) and references

therein. The NIG distribution nests several distributions including the normal distribution

N(�; �2), as can be seen by setting � = 0; �!1 and �=� = �2:

2.3 The NIG-GARJI model

Consider the return rt = (Pt � Pt�1)=Pt�1, with Pt being the price of a �nancial asset at

time t. The return is modelled as

rt � rf = �+
p
ht�+ "1;:t + "2;:t; (2)

with rf being the risk free rate. The parameter  =
q
��2 � ��2 can be interpreted as

a tail thickness parameter. Furthermore, �� = ��=�� = �=� is a measure of skewness. More

details on these parameters are given in e.g. Barndor¤-Nielsen and Prause (2001). The

�rst part of the return, �+
p
ht�+"1;t, is equal to the speci�cation of the NIG-S&ARCH

model of Jensen and Lunde (2001). Here, � is a constant compensating for risk and

p
��� compensates for the time varying (continuous) volatility risk,

p
ht. The continuous
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return innovation, "1;:t, is given by "1;:t =
p
htzt and the jump innovation "2;t is de�ned

as "2;t =
�tP
k=0

Jk;t � �t
�
�j +

��jp
1��2

�
. Both innovations are conditionally mean zero. The

distribution of the standardized residual, zt, is NIG(�; �;�
p
�; 3=2=�) giving mean zero

and unit variance.

The conditional variance evolves according to

ht = ! + exp (�1 + �1;j � Ft�1 + I (�1;a + �1;j;a � Ft�1))� (3)

("1;t�1 + "2;t�1)
2 + �2ht�1;

with

Ft�1 =
f (rtj�t = j;
t�1) exp(��t)�

j
t=j!

f (rtj
t�1)
j = 0; 1; 2::: (4)

being the �ltered number of jumps and �t is the jump intensity parameter speci�ed in

equation (5) below. I is an indicator function taking the value 1 if "1;t�1 + "2;t�1 < 0 and

zero otherwise. The variance speci�cation is equal to that of Maheu and McCurdy (2004)

and allows for four di¤erent responses depending on if there is a jump and on the sign of

the sum of the jump and the normal residuals. The e¤ect of positive normal news is given

by �1 and the e¤ect of negative normal news are given by �1 + �1;a: The e¤ect of positive

news when there is one jump is given by �1 + �1;j and �nally the e¤ect of negative news

in the presence of one jump is given by �1 + �1;j + �1;a + �1;j;a:

2.3.1 Jump intensity

The dynamics for the jump intensity are given by

�t = �0 + '�t�1 + ��t�1; (5)
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where �t�1 = Ft�1 � �t�1 is the expected (�ltered) number of jumps at time t � 1

given time t � 1 information minus the expected number of jumps at time t � 1 given

t� 2 information. Hence, �t�1 has the interpretation of an innovation to the jump arrival

process. The jump size Jt is distributed as NIG(�; �; �j ; �j), meaning that the jump

size has the same shape parameters as the GARCH type residual zt but it is allowed to

have di¤erent scale and location parameters. It should be emphasized that setting the

shape parameters in the jump size distribution and in the GARCH type residual equal is

less restrictive than assuming normality as was done in the original GARJI model. The

speci�cation for the jump dynamics (5) is identical to those of Maheu and McCurdy (2004).

The GARJI model is obtained as the special case when �� = 0; �� ! 1 and �j=� = �2.

The NIG-GARCH model is the special case obtained when �1;j = �1;a = �1;j;a = �� =

�0 = ' = � = �j = �j = 0:

2.3.2 Conditional moments

The conditional moments are calculated using the moment results for the NIG distribution

that are given in e.g. Jensen and Lunde (2001) together with appendix A in Das and

Sundaram (1997). To simplify notation we denote the mean jump size, �j +
��jp
1��2

; by ��j

and the jump variance,
�2j

��(1��2)
1:5 ; by ��j : The �rst four conditional moments of the model

are then given by

E[rtj
t�1] = �+ �
p
ht; (6)

V ar[rtj
t�1] = ht + �t
��
��j
�2
+ ��j

�
; (7)
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Skew[rtj
t�1] =
3h1:5t

�

(1��2)
0:25

�0:5
+ �t

�
3�2j�

�
j

��2(1��2)
2 + 3�

�
j�
�
j +

�
��j

�3�
�
ht + �t

��
��j

�2
+ ��j

��1:5 ; (8)

Kurt[rtj
t�1] = 3

0BBBBB@
h2t

�
4�2+1

��(1��2)
0:5

�
+

�t

0B@ �4j(4�2+1)
��3(1��2)

3:5 +
4�3j��

�
j

�2(1��2)
2:5 +

�
��j
�2

+2��j

�
��j

�2
+
�
��j

�4
=3

1CA

1CCCCCA (9)

�
ht + �t

�
��j +

�
��j
�2���2

+ 3:

As seen above, the conditional variance can be divided into a continuous part ht and a

jump part that will be zero if �t = 0. For the case with no asymmetry in the distribution

� = 0 =) � = 0 so the mean jump size simpli�es to �j and the jump variance to
�2j
�� .

The expression for the conditional skewness shows that skewness can be attained from a

non-zero �; meaning that the return innovation distribution and jump size distribution are

both skewed. Skewness can also be attained from a jump size, ��j , di¤erent from zero. For

the special case when the number of jumps is zero, the skewness simpli�es to 3�

(1��2)
0:25

�0:5

and the kurtosis to 3
�

4�2+1

��(1��2)
0:5 + 1

�
which are the same conditional moments as for the

NIG-S&ARCH model of Jensen and Lunde (2001). Since � is constant during the sample

period the time-variation in the conditional skewness and conditional kurtosis are induced

by time-variation in the jump intensity parameter �t and, just as for the GARJI model,

also by time-variation in the conditional variance ht.

2.4 Likelihood function

Given that "1;t and "2;t are contemporaneously independent then conditional on j jumps

occurring it is easily found using the convolution property of the NIG distribution that
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rt (j�t = j;
t�1) � NIG(�; �; �+(j � �t)
 

��jp
1� �2

+ �j

!
;
p
ht

3=2=�+ j�j); (10)

so the conditional distribution of rt for a given number of jumps is

f (rtj�t = j;
t�1) =
�

���t
exp

�
 +

� (rt � ��t )
��t

�
�

q

�
rt � ��t
��t

��1
�K1

�
�q

�
rt � ��t
��t

��
; (11)

with ��t = �+(j � �t)
�

��jp
1��2

+ �j

�
and ��t =

p
ht

3=2=�+j�j . The number of jumps

j is latent but with a known distribution so we can just integrate it out of the expression,

resulting in the likelihood function

f (rtj
t�1) =
1X
j=0

f (rtj�t = j;
t�1) � exp(��t)�
j
t=j!: (12)

In the empirical part we �nd that the contribution to the likelihood is negligible for

j > 8 so we truncate the in�nite sum in (12) at j = 8. Gauss code for estimation of the

model is available from the authors.

3 Value-at-Risk

Value-at-Risk is the maximum loss expected to incur over a certain time period (h) with

a given probability �. Statistically, V aRt (�; h) = F�1t+h (�) j
t, where F
�1
t+h is the h-step

conditional forecast of the inverse cumulative distribution function (CDF) of the return.

There is much interest in the measure because of the ongoing adoption of Basel II, which

allows banks to use internal VaR models for the purpose of regulating capital requirements.

For a survey, see for example Du¢ e and Pan (1997) or the textbook treatment in Jorion
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(2000).

3.1 VaR computation and decomposition

Using the fact that the conditional distributions of the GARJI and NIG-GARJI models

are probability weighted sums of the conditional distributions for �xed values of j and by

exchanging the order of summation and integration , the CDFs for the two models can be

expressed as

FTotal(x) =
1P
j=0

xZ
�1

f (rtj�t = j;
t�1) � exp(��t)�
j
t=j!: (13)

The contribution to the total CDF from the continuous component is given by setting

j = 0 so that

FCont(x) =

xZ
�1

f (rtj�t = 0;
t�1) � exp(��t): (14)

For the NIG-GARJI model f (rtj�t = j;
t�1) is given in (11) and for the GARJI model

by

f (rtj�t = j;
t�1) =
1q

2�
�
�2t + j�

2
j

� exp
 
�rt � �+ ��t � �j

2
�
�2t + j�

2
j

� !
: (15)

Total Value-at-Risk (V aRTotal) is computed by numerical inversion of (13) and continuous

Value-at-Risk (V aRCont) is computed by inverting the CDF (numerically) conditioned on

the number of jumps being equal to zero and then multiplying with the probability of

getting zero jumps (exp(��t)): Trunctation of the sum is made at j = 8. The jump

component of Value-at-Risk is de�ned as V aRjump = V aRTotal � V aRCont. Matlab code

for the V aR computation is available from the authors.
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3.2 Speci�c risk and event risk

The Basel accord (Basel 2006) distinguishes between two types of market risk: general

and speci�c with the event risk being a component of the speci�c risk. It further states

that most banks use models that only incorporate general risk and they should therefore

have a separate capital charge added for the speci�c risk.

Speci�c risk is de�ned as "... the risk that an individual debt or equity security moves

by more or less than the general market in day-to-day trading ... " and event risk is

de�ned as "where the price of an individual debt or equity security moves precipitously

relative to the general market" Basel (2006) page 163. Event risk can be thought of as

jump risk as pointed out by Gibson (2001). However, Gibson argues that jump risk and

event risk are the same thing. Since event risk is de�ned as a precipitous move in relation

to the market, this only holds true if there are no market wide jumps that a¤ect all or

most stocks. Contrary to this, we �nd in the empirical part of this paper that almost

1/3 of the V aR in the market index is due to the jump component. If jumps were purely

idiosyncratic (asset speci�c), their e¤ect would be diversi�ed away in the market portfolio.

We therefore propose to measure the average proportion of event risk in a position i over

the period [t; T ] as

V aRevent;i =

TP
t=1
max (V aRjump;i;t � V aRjump;m;t; 0)

TP
t=1
V aRtotal;i;t

2 [0; 1] ; (16)

with V aRjump;m;t being the V aR due to the jump component for the market portfolio

on day t. This quantitative de�nition, in accordance with the qualitative de�nition in

Basel II, implies that the market as a whole cannot have any event risk. Furthermore,

we only measure event risk as V aR jump risk that is greater than the market�s jump risk

each day. We do this since the V aR jump contribution of an asset consists of both the

V aR risk from asset speci�c jumps and from jump risk common to the whole market.
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Subtracting the market�s V aR jump risk gives us a measure that is in better accordance

with the Basel de�nition of the event risk. If the market-wide jump risk is greater than

the jump risk of the asset for a given day we set the asset-speci�c event risk to zero since

negative event risk lacks any natural interpretation. The model in this paper can be used

in conjunction with the above de�nition to measure the proportion (or absolute level if

one prefers) of the event risk in an asset. However, the suggested de�nition in (16) is more

general and not dependent on the particular model being used.

It is worth pointing out that since V aRevent is always less than or equal to V aRjump

we will have the relationship V aRcont + V aRevent � V aRTotal; so we do not propose that

capital adequacy should be computed from V aRcont+V aRevent: It should still be computed

from V aRTotal, but being able to measure the part of total V aR that stems from event

risk is useful both for regulators and banks. For regulators, who have to impose additional

capital charges on those bank�s whose models do not capture event risk, measuring the

event risk will help to determine an appropriate magnitude of the surcharge. For a bank,

showing that it uses a model that can properly measure event risk, lets the bank avoid the

additional capital charge. Further, for a bank to hedge its positions, it may be helpful to

know how much of its jump risk exposure stems from the market component (which can

be hedged by a short position in the market) and how much stems from the event risk

component which cannot easily be hedged.

4 Data

Evaluation of VaR is a study of extreme events which makes it important to use a long

series of data. As a proxy for the market we use the value weighted market index from

the CRSP record available from the data library at Professor Kenneth French�s homepage.

From the same source we also get the risk free rate proxied by the 30 day T-bill. Further-

more, we use three portfolios sorted on market capitalization, Size 1 (smallest 30% of the

market), Size 2 (Middle 40% of the market) and Size 3 (largest 30% of the market). These
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series are also available from Professor French�s data library.

In addition to this we use data on the 10 individual stocks with start dates in parenthe-

sis: Amgen (17 June, 1983), Apple (December 12, 1980), Coca Cola (KO, July 1, 1963),

General Motors (GM, July 1, 1963), Home Depot (HD, September 22, 1981), Hewlett-

Packard (HWP, July 1, 1963), Intel (December 14, 1972), Johnson & Johnson (J&J, July

1, 1963), Motorola (MOT, July 1, 1963) and Texaco ( July 1, 1963). The end date for

all the individual stocks is June 29, 2007 except for Texaco which ends October 9, 2001.

The market index data is from July 1, 1963 to September 28, 2007. For the three size

portfolios the start date is July 1, 1963 and the end date is August 31, 2007. As seen in

table 1, normality is clearly rejected with p-values from the Jarque and Bera (1987) test

less than 0.001 for all the data series. The market and the three size sorted portfolios

all have considerable negative skewness and excess kurtosis. While most of the individual

stocks also have negative skewness, all are less left skewed than the market portfolio. It

is commonly the case that stock indices are more left skewed than individual stocks as

documented in Kim and Kon (1994).

[Insert table 1 here]

5 Results

The interpretation of the parameter estimation results focus on the market index for

brevity but the parameter estimates for the three size sorted portfolios are also displayed

in table 2. The parameter estimates and residual diagnostics for the 10 individual stocks

are readily available from the authors upon request.

5.1 Variance equation

The e¤ects of jumps and the e¤ect of the sign of the return innovation on the volatility

process can be seen from the four parameters in the variance equation. The e¤ect of a

positive return innovation when there is no jump is given by �1
�
e�2:8906 = 0:05 6

�
for the
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NIG-GARJI model and 0:01 5 for the GARJI model. For a negative return innovation

with no jump the e¤ect for the NIG-GARJI model is �1 + �1;a
�
e�2:8906+1:2570 = 0:195 2

�
and 0:076 for the GARJI model showing that the leverage e¤ect (Black, 1976) is present

in the sample. The e¤ect of a positive return innovation when there is one jump is given

by �1 + �1;j
�
e�2:8906+(�12:0955) = 3: 1� 10�7

�
and by 9: 3 � 10�3 for the GARJI model

showing that positive jumps does not lead to higher future volatility. For a negative

return innovation when there is one jump the e¤ect is given by �1 + �1;a + �1;j + �1;j;a�
e�2:8906+1:2570+(�12:0955)+10:9816 = 0:06 4

�
and for the GARJI model 0:030. From this we

can see that the e¤ect on the squared residual is lower (the mean reversion rate is higher)

when we have a jump, leading to lower persistence in the jump component consistent with

the �ndings in Maheu and McCurdy (2004) and Andersen et al. (2007).

[Insert table 2 here]

5.2 Shape parameters and jump equation

Including jumps in the models seems justi�ed from the drastic improvement in log like-

lihood value from the NIG-GARCH to the NIG-GARJI model. A likelihood ration test

shows that the NIG-GARJI model is favored over the NIG-GARCH model for all the four

reported data sets with p-values less than 0.001.

In the NIG-GARJI model the observed sample skewness of -0.74 and excess kurtosis

of 17.83 can both be accommodated by a fat tailed and skewed error distribution or by

the jump component. This makes it possible to examine if skewness and excess kurtosis is

due to more extreme news events (picked up by the jump component) or if they are due to

normal news (picked up by the GARCH residual). In the original GARJI model this cannot

be examined since all skewness and excess conditional kurtosis must per construction be

modeled by the jump component.

The skewness parameter �� = �0:0467 is insigni�cant but the jump size location para-

meter �j is equal to �0:51 and signi�cant, showing that skewness "prefers" to be modeled
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by the jump component. It thus appears that skewness is better modeled as a result of

rare and more extreme return innovations than as a result of normal news innovations

being drawn from a skewed distribution. This cannot be accommodated by other popular

models with time varying skewness such as the Autoregressive Conditional Density model

of Hansen (1994).

The tail thickness parameter �� = 3:34 (implies a kurtosis of around 4 in the standard-

ized residual zt) indicates that some of the excess kurtosis "prefers" to be modeled by

the GARCH residual. One caveat to the above interpretation of the shape parameters is

that the jumpsize distribution and the normal news residual have to share the same shape

parameters.

The ARMA parameters, ' and �, in the jump equation are signi�cant in both the

GARJI and NIG-GARJI models showing that assuming a constant jump intensity is too

restrictive. The unconditional average number of jumps is �0= (1� ') = 0:17 for the NIG-

GARJI model and 0.13 for the GARJI model, this would at �rst seem contrary to the fact

that more of the tails of the distribution can be captured by the normal news innovation

in the NIG-GARJI model, as seen from �gure 1. The reason for this, as can also be seen

in �gure 1, is that the jump distributions for the GARJI and NIG-GARJI models are

very di¤erent. The GARJI model has much higher jump variance which leads the jump

proportion of both the standard deviation (45% for the GARJI model and 31% for the

NIG-GARJI model) and the jump proportion of V aR at the 0.5% level (38% instead of

30%) to be higher for the GARJI model.

[Insert �gure 1 here]

5.3 Higher moment dynamics

During the sample period the conditional skewness varies from -0.86 to -0.02 for the NIG-

GARJI model and from -1.84 to -0.03 for the GARJI model with the lowest (most negative)

skewness during the 1960s for both models. The conditional kurtosis varies from 3.52 to
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5.42 for the NIG-GARJI model and from 3.05 to 23.35 for the GARJI model, the highest

kurtosis is also found during the 1960s when the conditional variance for both models was

very low.3.

We compute the conditional skewness and kurtosis with parameter values from the

estimation on the CRSP market index to study if the conditional skewness and conditional

kurtosis of the NIG-GARJI model is primarily a¤ected by changes in the conditional

variance or by changes in the jump intensity. By using equation (8) and by setting �t

equal to its average value, we �nd that the skewness varies from -1.03 when ht = 0:04 (the

lowest value in the sample) to -0.02 when ht = 15:61 (the highest value in the sample).

By using equation (9) we see that the kurtosis changes from 5.16 to 3.89 for the same

changes in conditional variance. The size of these changes can be compared to the e¤ects

of changes in �t: For the CRSP market index, �t varies from a minimum of 0.07 to a

maximum of 1.01 which results in changes in skewness from -0.04 to -0.17 and in kurtosis

from 3.89 to 3.55 when keeping ht �xed on its average value. Interestingly, the conditional

kurtosis can be both increasing and decreasing in �t depending primarily on the size of

the variance parameter �j in the jump size distribution.

5.4 Model diagnostics

The residual diagnostics in table 3 show the heteroscedasticity adjusted Ljung-Box test of

West and Cho (1995) for remaining serial correlation in the squared standardized residual

zt and in the jump residual �t: The GARJI model shows no signi�cant remaining autocor-

relation in the squared residual, ("1;:t+"2;:t)
2

V aR(rtj
t�1) , when �tted to the market index and to the

large cap portfolio (Size 3) but for the two smaller size sorted portfolios there is remaining

structure in the variance evident from the signi�cant LB statistics at 5 lags. The pattern

is the same for the NIG-GARJI model.

The jump innovations show signi�cant remaining autocorrelation for the NIG-GARJI

model for three of the four test portfolios and for the GARJI model for the Size 1 and
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Size 2 portfolios. We have tried di¤erent speci�cations for the jump equation without

being able to mitigate this problem. For the ten individual stock returns (unreported)

the residual diagnostics generally show much less autocorrelation indicating that both

the NIG-GARJI and the GARJI model are better at capturing the variance and jump

dynamics in individual stocks than in portfolios of stocks.

[Insert table 3 here]

To test if the models can produce realistic VaR estimates we use the Likelihood Ratio

tests of Christo¤ersen (1998). These three tests allow us to ascertain if the number of VaR

violations are correct (LRunc), if the violations are independently distributed over time

(LRind) and �nally we have a joint test for independence and correct number of violations

(LRcc): The tests are performed on the indicator series It de�ned as

It =

8><>: 1; if rt > V aR�;t j
t�1

0 Otherwise
(17)

with t being a time subscript and � being the VaR level. This means that It will be 0

each time there is a violation (the loss is larger than the VaR level) and otherwise 1. The

test statistics (LRunc) and (LRind) are asymptotically distributed �2(1) and (LRcc) is

distributed �2(2). We perform these test for the VaR levels 0.5%, 1%, 2%, 3%, 4%, and

5% for both long and short positions (left and right tails of the distribution) in the CRSP

market index. The results are displayed in table 4.

[Insert table 4 here]

Even with 11,138 observations the expected number of VaR violations is rather small

at the 0.5% level (55.7 violations) so we simulate the distribution of the test statistics

instead of relying on the asymptotics. This is easily done since the indicator series is iid

Bernoulli(1��) under the null hypothesis. The reader is referred to Christo¤ersen (1998)
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for further details on the tests and to Christo¤ersen and Pelletier (2004) for details of the

simulation design.

Both models perform very well with the GARJI model perhaps performing somewhat

better for long position and the NIG-GARJI model performs somewhat better for short

positions. The NIG-GARJI model cannot be rejected as having the wrong number of

rejections for any of the V aR levels at the 1% signi�cance level and the GARJI model can

only be rejected at the 0.5% V aR level.

The results from the independence tests are mixed but at least at the higher V aR

levels (4% and 5%) both models seem to produce VaR violations that are clustered over

time. This can be expected given the residual diagnostics test which showed remaining

dependence in the innovations to the jump process.

By using the LRcc test we examine if the models can produce a correct number of

violations that are also independent over time. The GARJI model performs better and

can only be rejected at the 0.5% V aR level at the 1% signi�cance level. At this signi�cance

level the NIG-GARJI model can be rejected at 3 of the 12 V aR levels.

5.5 Volatility decomposition

The higher jump variance in the GARJI model results in an average 45.47% of the total

standard deviation being due to jumps compared with 31.12% for the NIG-GARJI model,

see �gure 2. From the �gure it can be seen that the jump component of the GARJI model

varies considerably more over the sample period whereas for the NIG-GARJI model it

is rather stable at around 3.4% expressed as yearly standard deviation. However, the

proportion of jump risk decreases slightly over time. The average level of total volatility

is close for the two models with 12.68% for the GARJI and 12.37% for the NIG-GARJI

model compared with the sample standard deviation of 13.97%.

[Insert �gure 2 here]
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5.6 Value-at-Risk decomposition

We use the NIG-GARJI and GARJI models to decompose the proportion of the total VaR

that is attributable to the jump component. The results can be seen in �gure 3 and table

5. For the CRSP market index the 1% VaR from a long position consists of 29.38% jump

risk compared with 30.07% for the 5% V aR. The jump risk proportion behaves much

more erratically over time for the GARJI model because of the higher estimated jump

variance in this model.

[Insert table 5 here]

[Insert �gure 3 here]

For a short position, the jump proportion of the VaR is considerably smaller with

15.74% for the 1% VaR and 14.61% for the 5% V aR. The reason for this asymmetry is

the negative average jump size of -0.51.

For the three size sorted portfolios we see a very clear pattern: the jump VaR is

decreasing when the size of the �rms is increasing. The smallest 30% of the stocks in

the CRSP database (Size 1) have 60.02% jump V aR for the 1% VaR level. This can be

compared to 42.30% for Size 2 and with 6.35% for the largest 30% of the companies. For a

short position, the pattern is the same but the proportion of jump VaR is smaller because

all the three size portfolios have negative average jump sizes.

Since the market portfolio holds a rather large degree of jump risk we would overes-

timate the event risk (in the Basel sense) in individual assets by equating jump risk and

event risk. We therefore instead use our de�nition in (16) to calculate the event risk.

The event risk proportions for each day are displayed in �gures 4, 5 and 6 for the size

sorted portfolios and the average event risk percentage for the size portfolios and for the

10 individual stocks are given in table 6.

[Insert table 6 here]
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[Insert �gures 4,5 and 6 here]

The proportion event risk varies greatly between the di¤erent assets. The small stock

portfolio has an event risk of roughly 30% of the total V aR, the mid cap portfolio has

around 13-14% event risk and the large cap portfolio has almost no event risk with a pro-

portion less than 1%. We would like to emphasize that the large cap portfolio constitutes

30% of the value of the market portfolio and so does the portfolio of small cap stocks.

The inverse relation between event risk and market size can therefore not simply be a

mechanical artifact of subtracting the market�s jump induced VaR.

The individual stocks have large variations in event risk. Motorola and General Motors

have an event risk of 1%-2% whereas for Apple, Hewlett Packard and J&J the event risk

is around 30% of the total V aR. For all the individual stocks the event risk is higher

for short than for long positions even though the jump risk is lower for short than long

positions for some of the stocks. This happens because even though some of the individual

stock returns are left skewed (explaining the lower jump proportion for short positions)

they are less left skewed than the market resulting in a higher event risk for short than

long positions.

6 Conclusions

Models such as the NIG-GARJI that can capture and measure event risk are important for

banks since they can use the models to better calculate their VaR with the added bene�t

of avoiding capital surcharges from regulators. Such models should also be of interest to

supervisors since they have to be able to quantify the event risk in an asset or portfolio of

assets to add a capital surcharge of appropriate magnitude.

We show that the Value-at-Risk of the market consists of about 30% jump risk and

hence equating event risk and jump risk as suggested by Gibson (2001) would seriously

overestimate the event risk since it is de�ned as a precipitous move relative to the market.

We further show that the event risk varies much across di¤erent assets. The total VaR
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of a portfolio of the 30% smallest companies of the market index is found to consist of

around 30% event risk. In contrast to this, a portfolio of the 30% largest companies has

an event risk proportion less than 1%.

Also for individual stocks we �nd a large variation in the event risk across stocks but a

rather small variation in the event risk for a given stock over time. The observed variation

highlights the importance for the regulator to vary the capital surcharge, based on the

type of assets, imposed on banks that do not properly model the event risk. Furthermore,

the �nding that the event risk for some assets constitutes nearly 1/3 of the total VaR

shows it to be very important for banks to incorporate the event risk in their internal VaR

models.
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Legends

Legend 1: This �gure shows the probability density plots for the jump size distribution

(top left) and for the standardized return innovation distribution (top right), for the NIG-

GARJI and GARJI models. The bottom left plot magni�es the left tail and the bottom

right plot magni�es the right tail of the standardized return innovation distribution.

Legend 2: This �gure shows the jump component in the standard deviation (top), the

total standard deviation (middle) and the jump proportion (bottom) of the CRSP market

portfolio from July 1, 1963 to September 28, 2007. The results for the NIG-GARJI model

are to the left and for the GARJI model to the right.

Legend 3: This �gure shows the jump proportion of the total Value-at-risk for the

1% VaR (top) and 5% VaR (bottom) of the CRSP market portfolio from July 1, 1963 to

September 28, 2007. The results for the NIG-GARJI model are to the left and for the

GARJI model to the right.

Legend 4: This �gure shows the jump proportion of the total Value-at-risk for the 1%

VaR long position (top) and 1% VaR short position (bottom) in the small cap portfolio

from July 1, 1963 to August 31, 2007 for the NIG-GARJI model.

Legend 5: This �gure shows the jump proportion of the total Value-at-risk for the 1%

VaR long position (top) and 1% VaR short position (bottom) in the medium cap portfolio

from July 1, 1963 to August 31, 2007 for the NIG-GARJI model.

Legend 6: This �gure shows the jump proportion of the total Value-at-risk for the 1%

VaR long position (top) and 1% VaR short position (bottom) in the large cap portfolio

from July 1, 1963 to August 31, 2007 for the NIG-GARJI model.
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Notes

1See e.g. Andersen et al. (2003), Eraker et al. (2003), Barndor¤-Nielsen and Shephard (2004, 2006)

and references therein.

2However, as pointed out by a referee, the GARJI model can accomodate non-zero unconditonal skew-

ness through the asymmetry in the variance equation.

3Time series plots of the conditional moments can be obtained from the corresponding author but are

left out because of space considerations.
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Table 5

Value-at-Risk decomposition - Proportion Jump risk

This table shows the average proportion of jump risk of the total VaR for the 1% and 5% VaR for both long and

short positions in the assets. The results are for the CRSP market portfolio (Market) from July 1, 1963 to

September 28, 2007, the three size sorted portfolios (Size 1, Size 2 and Size 3) from July 1, 1963 to August 31,

2007 and for 10 individual stocks. See the main text for details on dates and acronyms for the individual stocks.

Proportion jump risk

1% VaR, long 5% VaR, long 1% VaR, short 5% VaR, short

Market 29.38% 30.07% 15.74% 14.61%

Size1 60.02% 59.88% 48.17% 46.11%

Size2 42.30% 43.05% 26.06% 24.53%

Size3 6.35% 3.83% 2.74% 1.96%

Amgen 23.14% 16.69% 25.15% 18.52%

Apple 36.25% 31.01% 44.78% 38.62%

KO 24.71% 20.65% 29.22% 24.14%

GM 0.89% 0.56% 3.94% 1.85%

HD 15.39% 10.03% 14.89% 9.96%

HWP 38.51% 34.93% 43.90% 40.31%

Intel 12.94% 7.94% 10.30% 6.67%

J&J 47.56% 43.97% 51.76% 48.33%

MOT 10.75% 6.28% 10.22% 6.09%

Texaco 19.47% 16.56% 28.04% 23.38%
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Table 6

Value-at-Risk decomposition - Proportion Event risk

This table shows the average proportion event risk calculated according to (16) of the total VaR for the 1% and

5% VaR for both long and short positions in the assets. The results are for the CRSP market portfolio (Market)

from July 1, 1963 to September 28, 2007, the three size sorted portfolios (Size 1, Size 2 and Size 3) from July 1,

1963 to August 31, 2007 and for 10 individual stocks. See the main text for details on dates and acronyms for the

individual stocks.

Proportion event risk

1% VaR, long 5% VaR, long 1% VaR, short 5% VaR, short

Market 0% 0% 0% 0%

Size1 29.95% 28.29% 31.18% 30.45%

Size2 13.70% 13.74% 10.09% 10.04%

Size3 0.95% 0.58% 0.47% 0.32%

Amgen 14.38% 8.74% 20.91% 14.25%

Apple 28.56% 22.86% 41.16% 34.86%

KO 9.44% 6.37% 21.57% 16.54%

GM 0.34% 0.21% 1.77% 0.92%

HD 6.56% 3.50% 10.10% 5.61%

HWP 27.49% 23.53% 38.87% 35.24%

Intel 5.11% 2.17% 6.00% 3.02%

J&J 31.26% 27.31% 44.30% 40.94%

MOT 2.30% 0.66% 5.56% 2.15%

Texaco 9.70% 7.55% 22.15% 17.84%
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Figure 1

Probability density plots - NIG-GARJI and GARJI models
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Figure 2

Variance decomposition market index - NIG-GARJI and GARJI models

1 3000 6000 9000 11138
0

5

10

15

20

25

30

35

Observations

Y
ea

rly
 p

er
ce

nt
ag

e 
vo

la
til

ty
Jump Component NIGGARJI model

1 3000 6000 9000 11138
0

5

10

15

20

25

30

35

Observations

Y
ea

rly
 p

er
ce

nt
ag

e 
vo

la
til

ty

Jump Component GARJI model

1 3000 6000 9000 11138
0

10

20

30

40

50

60

70

Observations

Y
ea

rly
 p

er
ce

nt
ag

e 
vo

la
til

ty

Total Volatility NIGGARJI model

1 3000 6000 9000 11138
0

10

20

30

40

50

60

70

Observations

Y
ea

rly
 p

er
ce

nt
ag

e 
vo

la
til

ty

Total Volatility GARJI model

1 3000 6000 9000 11138
0

0.25

0.5

0.75

1

Observations

P
ro

po
rti

on
 o

f T
ot

al
 V

ol
at

ili
ty

 d
ue

 to
 J

um
p 

C
om

po
ne

nt

Jump proportion NIGGARJI model

1 3000 6000 9000 11138
0

0.25

0.5

0.75

1

Observations

P
ro

po
rti

on
 o

f T
ot

al
 V

ol
at

ili
ty

 d
ue

 to
 J

um
p 

C
om

po
ne

nt

Jump proportion GARJI model

39



Figure 3

Value-at-Risk decomposition market index - NIG-GARJI and GARJI model
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Figure 4

Event risk - Size1 (Smallest 30%)
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Figure 5

Event risk - Size2 (Middle 40%)
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Figure 6

Event risk - Size3 (Largest 30%)
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