
Pricing Foreign Equity Option with time-changed Lévy
Process

Abstract. In this paper we propose a general foreign equity option pricing framework that
unifies the vast foreign equity option pricing literature and incorporates the stochastic volatil-
ity into foreign equity option pricing. Under our framework, the time-changed Lévy pro-
cesses are used to model the underlying assets price of foreign equity option and the closed
form pricing formula is obtained through the use of characteristic function technology. Nu-
merical tests indicate that stochastic volatility has a dramatic effect on the foreign equity
option prices.
Keywords: Foreign equity option; Lévy process; Time-changed Lévy process; Fast Fourier
transformation

1 Introduction

With the growth in globalization of investments and the continued liberalization of cross-border cash flows,
the currency translated foreign equity options (cross-currency options) have gained wider popularity. For-
eign equity options are contingent claims where the payoff is determined by an equity in one currency but
the actual payoff is done in another currency. By a variety of combinations on linking foreign asset price
and exchange rate, foreign equity options traded on international markets provide an efficient means of
managing multidimensional risks.

Previous studies dealing with the currency translated foreign equity options usually model the dynamics
of asset price and exchange rate with Brownian motions, see, for example, Wei (1992), Dravid, Richardson,
and Sun (1993), Ho, Stapleton, and Subrahmanyam (1995), Reiner (1992), Toft and Reiner (1997), and
Kwok and Wong (2000). Duan and Wei (1999) priced foreign currency and cross-currency options under
GARCH model. However, despite the success of the Black-Scholes model based on Brownian motion and
normal distribution, two empirical phenomenons can not be explained by Black-Scholes model: (1) the
asymmetric leptokurtic features and (2) the volatility smile. Simultaneously, jumps are clearly identifiable
from equity data, see, for example, Eraker (2004), Eraker, Johannes, and Poison (2003), and references
therein. Many studies have been conducted to modify the Black-Scholes model, see, for example, Merton
(1976), Heston (1993), Bakshi, Cao, and Chen (1997), Bates (2000), Duffie, Pan and Singleton (2000),
Geman, Madan, and Yor (2001), Kou (2002), Carr and Wu (2004), Chen and Kulperger (2006), Lau and Siu
(2008), and Xu et al. (2009, 2010). In the exchange rate modelling, Brownian motions are also contradicted
with empirical phenomenon. Many studies indicate that jumps are important components of the exchange
rate dynamics, see, for example, Xu, Wu and Li (2010), Xu et al. (2010), Jorion (1998), Johnson and
Schneeweis (1994, 2002), Bates (1996a, 1996b), and Carr and Wu (2007).

Huang and Hung (2005) went beyond the traditional Black-Scholes framework and priced foreign equity
options under Lévy processes. In Huang and Hung’s paper, the exchange rate and foreign asset prices are
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modeled as multidimensional Lévy processes and the option value is calculated with the Fourier inverse
transformation. The motivation of this study is that Huang and Hung (2005) assumed the volatility of
underlying asset returns of foreign equity option constant. This assumption differs from many empirical
study results that return volatilities vary stochastically over time. The purpose of this paper is to explore the
use of time-changed Lévy processes as a way to capture this fact, and the closed form pricing formula of
foreign equity option is obtained. Following Carr and Madan (1999), fast fourier transform of option prices
is derived. The foreign equity option pricing model used by Huang and Hung (2005) is a special case of
our pricing model when the stochastic clock on which the Lévy process is run becomes a calendar time.
As in Carr and Wu (2004), we can regard the original clock as calendar time and the new random clock
as business time. A more active business day implies a faster business clock, and randomness in business
activity generates randomness in volatility.

This paper is organized as follows. In Section 2, we introduce the Lévy characteristics and types of Lévy
processes. Section 3 presents the fundamental theorem simplifying the calculation of the characteristic
function of the time-changed Lévy process. Section 4 shows foreign equity option pricing based on time-
changed Lévy process. The concluding remarks are given in Section 5.

2 Lévy processes

Lévy processes constitute a wide class of stochastic processes whose sample paths can be continuous,
mostly continuous with occasional discontinuities, and purely discontinuous. Generally, Lévy processes
are a combination of a linear drift, a Brownian motion, and a jump process. The classic Black-Scholes (BS)
model is characterized as the only continuous Lévy model. For a more complete presentation on the topic
of Lévy processes see the books Cont and Tankov (2004).

2.1 Lévy characteristics

For the remainder of the paper, we fix a probability space (Ω,F ,P) and a standard complete filtration
F = {Ft|t ≥ 0}. The following definition formalizes the class of Lévy processes (see Cont and Tankov,
2004, P. 68).

Definition 1. [Lévy processes] A right-continuous with left limits stochastic process (Xt)t≥0 on (Ω,F ,P)
with values in Rd such that X0=0 is called a Lévy process if it possesses the following properties:

1. Independent increments: for every increasing sequence of times t0, · · · , tn, the random variables
Xt0 , Xt1 −Xt2 , · · · , Xtn

−Xtn−1 are independent.
2. Stationary increments: the law of Xt+h −Xt does not depend on t.
3. Stochastic continuity: ∀t > 0, lim

h→0
P(|Xt+h −Xt| ≥ ε) = 0.

By the Lévy-Itô decomposition, any Lévy process Xt on Rd can be written as following representation
form (see Cont and Tankov, 2004, Proposition 3.7):

Xt = γt + Bt +
∫

|x|≥1,s∈[0,t]

xJX(ds× dx) + lim
ε↓0

∫

ε≤|x|<1,s∈[0,t]

x{JX(ds× dx)− ν(dx)ds)}, (1)

where γ ∈ Rd is a constant vector, Bt is a d-dimensional Brownian motion with covariance matrix A, and
JX is a poisson random measure on [0,∞) × Rd with intensity ν(dx)dt. In particular, Lévy measure ν is
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defined on Rd
0 (Rd less zero) with ∫

Rd
0

(1 ∧ x2)ν(dx) < ∞,

and describes the arrival rates for jumps of every possible sizes for each component of X . The Lévy-Itô
decomposition entails that every Lévy process is specified by the vector γ ∈ Rd, the positive semi-definite
matrix on A ∈ Rd×d, and the Lévy measure ν defined on Rd

0. The triplet (γ, A, ν) is called characteristic
triplet or Lévy triplet of the process Xt. By the Lévy-Khinchin representation theorem (see Cont and
Tankov, 2004, Theorem 3.1), the characteristic function of Xt with characteristic triplet (γ, A, ν) has the
form

φXt
(z) = E[eiz·Xt ] = e−tψx(z), z ∈ Rd, t ≥ 0, (2)

where the characteristic exponent ψx(z) is given by

ψx(z) = −iγ · z +
1
2
z ·Az +

∫

Rd
0

(1− eiz·x + iz · x1|x|≤1)ν(dx). (3)

The characteristic function (2) is defined on the real space z ∈ Rd. In many applications, it is convenient
to extend the characteristic function parameter z to the complex space z ∈ Cd, where the characteristic
function is well defined. When characteristic function φXt

(z) is defined on the complex space, it is referred
to as the generalized Fourier transform (see Titchmarsh, 1975)

2.2 Types of Lévy processes

Depending on differences in their jump component, Lévy processes used to model the financial asset price
dynamics fall into two categories. The first category, called finite-activity models, are characterized by the
feature: ∫

R0

ν(dx) = λ < ∞. (4)

Intuitively speaking, a finite-activity process exhibits a finite number of jumps within any finite time inter-
val. For such processes, the integral

∫
R0

ν(dx) defines the Poisson intensity λ. Obviously, one can choose
any distribution function for the jump size and obtain the following Lévy measure:

ν(dx) = λF (dx). (5)

The classical example of a finite-activity jump process is the compound Poisson jump-diffusion model of
Merton (1976) (MJ). Conditional on one jump occurring, the MJ model assumes that the jump magnitude
is normally distributed with mean µJ and variance σ2

J , and the Lévy measure is given by

ν(dx) = λ
1√

2πσ
J

exp(− (x− µ
J
)2

2σ2
J

)dx. (6)

In another example, Kou (2002) assumes a double-exponential conditional distribution for the jump size,
and the Lévy measure is given by

ν(dx) = pλη1e
−η1x1x>0 + (1− p)λη2e

−η2|x|1x<0dx. (7)

In the first category, called jump-diffusion models, the normal evolution of prices is given by a diffusion
process, punctuated by jumps at random times.
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By using the Lévy-Khintchine formula in (3), the characteristic exponent corresponding to these com-
pound Poisson jump-diffusion model is given by

ψx(z) = −ibz +
1
2
σ2z2 +

∫

R0

(1− eizx)ν(dx). (8)

where b = γ − ∫
|x|≤1

xν(dx).
The second category consists of models with infinite number of jumps within any finite time interval,

which we will call infinite activity models. The integral of Lévy measure (4) is no longer finite. Examples in
this class include the finite moment log-stable (FMLS) model of Carr and Wu (2003), the variance gamma
(VG) model of Madan and Milne (1991) and Madan, Carr, and Chang (1998), the normal inverse Gaussian
(NIG) model of Barndorff-Nielsen (1998), the CGMY model of Carr et al. (2002), and the generalized
hyperbolic (GH) model of Eberlein, Keller, and Prause (1998). For more discussion of these models, see
Cont and Tankov (2004). Table 1 lists the Lévy measures and characteristic exponents of the finite-activity
and infinite-activity jump models. We also list the characteristic exponents of an arithmetic Brownian
motion, which is the only purely continuous Lévy process. Note that the FMLS model can be regarded as a
special case of α-stable model with α ∈ (1, 2], β = −1, and x < 0.

Table 1. Entries summarize the Levy measure and its corresponding characteristic exponent for finite-activity and
infinite-activity jump models.

Models Levy measures ν(dx)/dx Characteristic exponent ψx(z)

Pure continuous Levy process
µt + σWt — −iµz + 1

2
σ2z2

Finite-activity models

Merton (1976) λ√
2πσ2

J

exp{− (x−µJ )2

2σ2
J

} −ibz + σ2z2

2
− λ{eiµJ z−σ2

J z2/2 − 1}
Kou (2002) pλη1e

−η1x1x>0 + (1− p)λη2e
−η2|x|1x<0 −ibz + σ2z2

2
− izλ{ p

η1−iz
− 1−p

η2+iz
}

Infinite-activity models

VG 1
κ|x| exp{ θ

σ2 −
√

θ2+2σ2/κ

σ2 } 1
κ

ln(1 + z2σ2κ
2

− iθκz)

NIG exp(βx) δα
π|x|K1(α|x|) −δ(

√
α2 − β2 −

√
α2 − (β + iz)2 − izµ)

CGMY C exp(−G|x|)
|x|1+Y , x < 0; C exp(−M|x|)

|x|1+Y , x > 0 CΓ(−Y )[MY − (M − iz)Y + GY − (G + iz)Y ]

GH eβx

|x| (
∫∞
0

exp(−
√

2y+α2|x|)
π2y(J2

λ
δ
√

2y+Y 2
λ

δ
√

2y)
dy − ln[eiµz( α2−β2

α2−(β+iz)2
)λ/2 κλδ

√
λ2−(β+iz)2

κλδ
√

α2−β2
]

+λ1λ≥0e
−α|x|)

α-stable model A
xα+1 1x>0 + B

|x|α+1 1x<0 exp{−σα|z|α(1− iβsgn z tan πα
2

) + iµz}, α 6= 1;

exp{−σ|z|(1 + iβ 2
π

sgn z log |z|) + iµz}, α = 1

3 Time-changed Lévy processes

To capture the stochastic volatility from economic shocks, as in Carr and Wu (2004), we introduce a random
time change to Lévy process. Let Xt denote a d-dimensional Lévy process and t → Tt(t ≥ 0) be an
increasing right-continuous process with left limits that satisfy the usual technical conditions, the time-
changed Lévy process Yt is defined by evaluating X at Tt, i.e.,

Yt = XTt
, t ≥ 0. (9)

Obviously, by specifying different Lévy characteristics for Xt and different random processes for Tt, we
can generate a wide range of stochastic processes from this setup. Following Carr and Wu (2004), for
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simplicity we also characterize the random time change in terms of its local intensity v(t),

Tt =
∫ t

0

v(s−)ds. (10)

Carr and Wu (2004) label v(t) as the instantaneous (business) activity rate and regard Tt as business time at
calendar time t. A more active business day, captured by a higher activity rate, generates higher volatility
for asset returns. The randomness in business activity generates randomness in volatility.

If random time Tt is independent of Xt, the characteristic function of time-changed Lévy process Yt =
XTt

can be obtained directly by using Eq. (2),

φyt
(z) = E[eiz.XTt ] = E[E[eiz.Xu ]|Tt = u]

= E[e−Ttψx(z)]

= LTt
(ψx(z)) (11)

Under independence, the characteristic function of Yt is reduced to the Laplace transform of Tt evaluated
at characteristic exponent of Xt. Hence, if the characteristic exponent of Xt and the Laplace transform of
Tt are both available in closed form, the characteristic function of Yt can be obtained in closed form. In
principle, the characteristic exponent of Xt can be calculated by the Lévy-Khintchine theorem in (3). To
obtain the Laplace transform of Tt in closed form, Carr and Wu (2004) show that one can adopt the vast
literature in term structure modeling for the purpose of modeling the instantaneous activity rate v(t) by
regarding ψx(z)v(t) as the instantaneous interest rate.

When the Lévy process and time-change are correlated, Carr and Wu (2004) propose a new measure
transform method, named leverage-neutral measure, to generalize the reduction in (11) of the characteristic
function to a bond pricing formula. This generalization is very important in option pricing model based on
time-changed Lévy process, and allows us to easily capture the well-known leverage effect.

Theorem 1. [Carr and Wu, 2004, Theorem 1] The problem of finding the generalized Fourier transform
of the time-changed Lévy process Yt = XTt

under measure P reduces to the problem of finding the Laplace
transform of random time under the complex-valued measureQ(z), evaluated at the characteristic exponent
ψx(z) of Xt,

φYt
(z) = E[eiz.Yt ] = Ez[e−Ttψx(z)] = L z

Tt
(ψx(z)), (12)

where E[·] and Ez[·] denote expectations under measures P and Q(z), respectively. The new class of
complex-valued measures Q(z) is absolutely continuous with respect to P and is defined by

dQ(z)
dP

|t = Mt(z), (13)

with
Mt(z) = exp(iz.Yt + Ttψx(z)), z ∈ D ∈ Cd. (14)

Theorem 1 generalizes the previous results on an independent time change to the case where the Lévy
process and the time change can be correlated. When the leverage effect exists in the original economy, the
expectation can be performed under this complex-valued measure proposed by Carr and Wu (2004) as if
the economy were devoid of the leverage effect.
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4 Foreign equity option pricing under time-changed Lévy processes

The underlying asset of foreign equity options are foreign equities, with the strike price being in either
foreign or domestic currency, but with the payoff being transformed into domestic currency based on the
exchange rate on expiration. The payoff of a foreign equity option stuck in a foreign currency is given by

FEOF = Ft(St −KF )+ (15)

where Ft is the exchange rate at time t in domestic/foreign currency, St is the stock price in foreign currency
on expiration, and KF is the strike price in the foreign currency. In an alternative form of the foreign equity
option, the strike price can also be expressed in domestic currency. This type of option is appropriate to
an investor who wishes to make sure that the future payoff from the foreign market is meaningful when
converted into his or her own currency. Such an option has the following payoff

FEOD = (FtSt −KD)+ (16)

where KD is the strike price in domestic currency. Foreign swap options differ from foreign equity options
in providing investors with the right to exchange one foreign asset for another. That is, foreign swap options
help investors protect themselves against not only exchange rate fluctuations but also further investment
protection. The payoff of a foreign swap option is given by

Swap = Ft(S1
t − S2

t )+. (17)

To investigate the foreign equity option pricing, we consider a market model with one exchange rate
and two foreign assets (F 1

t , S2
t , S3

t ) given by

F 1
t = F 1

0 eY 1
t , S2

t = S2
0eY 2

t , S3
t = S3

0eY 3
t , (18)

where (F 1
0 , S2

0 , S3
0) denotes the price at time 0, and (Y 1

t , Y 2
t , Y 3

t ) is a three dimensional time-changed Lévy
process. We specify that under a risk neutral measureQ, the logarithm of the exchange rate and two foreign
assets follow a time-changed Lévy process,




Y 1
t

Y 2
t

Y 2
t


 =




rd − rf

rf

rf


 t +




W 1
T 1

t

W 2
T 2

t

W 3
T 3

t


− 1

2
A




T 1
t

T 2
t

T 3
t


 + (Jt − µ̄t) (19)

where (T 1
t , T 2

t , T 3
t )> is a 3-dimensional random time changes, and (W 1

T 1
t
,W 2

T 2
t
,W 3

T 3
t
)> is a 3-dimensional

Brownian motion. In order to obtain the explicit closed form solution for foreign equity option pricing, we
assume that the Brownian, W i

t , i = 1, 2, 3, is independent of each other and the covariance matrix A satisfy
(A)ii = σ2

i , and (A)ij = 0, i 6= j. The second term, (rd−rf , rf , rf )>t, is determined by no-arbitrage. The
third term, (W 1

T 1
t
,W 2

T 2
t
,W 3

T 3
t
)> − 1

2A(T 1
t , T 2

t , T 3
t )>, comes from the diffusion, with 1

2A(T 1
t , T 2

t , T 3
t )> as

the concavity adjustment. The last term, Jt−µ̄t, represents the contribution from the jump component, with
µ̄t as the analogous concavity adjustment for Jt. Each jump component in Jt is assumed to be independent.
Constant vector µ̄ is determined by the specification of the jump structure Jt. The compound Poisson jump
process of Merton (1976) is used in this paper, which has been widely adopted by the finance literature.
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Under this process, the last term on the right side of Eq. (19) becomes

Jt − µ̄t =




N1t∑
i=1

ln q1i − λ1(eµ1J+ 1
2 σ2

1J − 1)t

N2t∑
i=1

ln q2i − λ2(eµ2J+ 1
2 σ2

2J − 1)t

N3t∑
i=1

ln q3i − λ3(eµ3J+ 1
2 σ2

3J − 1)t




where {q·i} is a sequence of independent identically distributed nonnegative conditional jump size random
variables such that ln q· is normally distributed with mean µ·J and variance σ2

·J , and Nit are independent
Poisson processes with constant intensity λi for i = 1, 2, 3. When the stochastic time changes Tt in Eq.
(19) are a calendar time t, this Lévy process is just the one used by Huang and Hung (2005) in pricing
foreign equity options. When the λ = 0 and Tt = t, the stochastic processes governing the asset dynamics
become the Brownian motions which are used by Dravid, Richardson, and Sun (1993) and Kwok and Wong
(2000) in pricing foreign equity options. In equation (19), the stochastic time changes can be applied to
both the diffusion and jump martingale components. However, in order to show how to incorporate the
stochastic volatility into the foreign equity option pricing, we just apply stochastic time changes to the
diffusion component.

In order to have a tractable Laplace transform of the random time in this paper, we consider that the
instantaneous activity rate follows the mean-reverting square-root process of Heston (1993). Under the
risk-neutral measure Q, the activity rate process, therefore satisfies the following stochastic differential
equation

[v1(t), v2(t), v3(t)]> = [
∂T 1

t

∂t
,
∂T 2

t

∂t
,
∂T 3

t

∂t
]>, (20)

dvi(t) = κi(θi − vi(t))dt + σvi

√
vi(t)dBi

t, i = 1, 2, 3. (21)

where Bi
t, i = 1, 2, 3, is a standard Brownian motion under Q, which can be correlated with the standard

Brownian W i
t in the return process by ρidt = EQ[dW i

t dBi
t], i = 1, 2, 3. κ, θ, and σv are respectively speed

of adjustment, long-run mean, and volatility of volatility.

4.1 FEOD options

To price FEOD options driven by a time-changed Lévy process, we first derive the generalized Fourier
transform of the asset return under the risk-neutral measure and then use the efficient fast Fourier transform
(FFT) algorithm proposed by Carr and Madan (1999) to compute option prices.

4.1.1 Deriving the Fourier transform

Let F 1
t S2

t be the underlying asset price of a FEOD option at time t, and F 1
0 S2

0 be the price at time 0. Then,
we can specify the price process as an exponential affine function of the time-changed Lévy process Yt,

F 1
t S2

t = F 1
0 S2

0 exp(Y 1
t + Y 2

t ) (22)
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Let st = ln(F 1
t S2

t /F 1
0 S2

0) denote the log return of the asset. Then, by Theorem 1, the generalized Fourier
transform of st under this specification is given by

φst
(z) = E[eizst ] = E[exp{izrdt + iz(W 1

T 1
t

+ W 2
T 2

t
)− iz

1
2
(T 1

t σ2
1 + T 2

t σ2
2)

+ iz(
N1t∑

i=1

ln q1i − λ1(eµ1J+ 1
2 σ2

1J − 1)t +
N2t∑

i=1

ln q2i − λ2(eµ2J+ 1
2 σ2

2J − 1)t)}]

= eizrdte−t(ψ1,J−µ̄
+ψ2,J−µ̄

)L z
(T 1

t ,T 2
t )(ψw1+w2(z) + iz

1
2
(σ2

1 + σ2
2)), (23)

where (
ψ1,J−µ̄

ψ2,J−µ̄

)
=

(
λ1[iz(eµ1J+ 1

2 σ2
1J − 1)− (eizµ1J− 1

2 z2σ2
1J − 1)]

λ2[iz(eµ2J+ 1
2 σ2

2J − 1)− (eizµ2J− 1
2 z2σ2

2J − 1)]

)
,

ψw1+w2(z) is the characteristic exponent of W 1
t +W 2

t , and L z
(T 1

t ,T 2
t )

(·) represents the Laplace transform of
the stochastic time (T 1

t , T 2
t ) under a new complex-valued measure Q(z). The measure Q(z) is absolutely

continuous with respect to the risk-neutral measure Q and is defined by

dQ(z)
dQ

= exp{iz(W 1
T 1

t
+W 2

T 2
t
− 1

2
(T 1

t σ2
1 +T 1

t σ2
2))+T 1

t ψw1(z)+T 2
t ψw2(z)+

1
2
iz(T 1

t σ2
1 +T 2

t σ2
2)}. (24)

Since the Laplace transform of the time change in Eq. (23) is defined under a new measure Q(z), we
need to obtain the instantaneous activity rate processes under Q. By the Girsanov’s Theorem, under the
measure Q(z), the diffusion part of vi(t) is unchanged, while the drift part of vi(t) is changed into

µQ(z)
vi

(t) = κi(θi − vi(t)) + izσiσvi
ρivi(t), i = 1, 2, 3.

If, we assume that the three activity rates are independent of each other, then the Laplace transform in Eq.
(23) becomes a product of two Laplace transform, one for the stochastic time T 1

t , and the other for the
stochastic time T 2

t ,

L z
(T 1

t ,T 2
t )(ψw1+w2(z) + iz

1
2
(σ2

1 + σ2
2)) = L z

T 1
t
(ψw1(z) + iz

1
2
σ2

1)L z
T 2

t
(ψw2(z) + iz

1
2
σ2

2). (25)

By Proposition 1 of Carr and Wu (2004), the Laplace transform of the random time, T i
t =

∫ t

0
vi(s−)ds,

i=1, 2, is an exponential-affine function of the Markov process vi(t):

L z
T i

t
(λi) = EQ(z)[e−λiT

i
t ] = exp(−bi(t)vi(0)− ci(t)), i = 1, 2, (26)

where

λ1 = ψw1(z) + iz
1
2
σ2

1 =
1
2
(z2σ2

1 + izσ2
1), (27)

λ2 = ψw2(z) + iz
1
2
σ2

2 =
1
2
(z2σ2

2 + izσ2
2), (28)

and bi(t) and ci(t) can be obtained by solving the following ordinary differential equations:

b
′
i(t) = λi − (κi − izσiσviρi)bi(t)− 1

2
σ2

vi
b2
i (t), (29)

c
′
i(t) = bi(t)κiθi, (30)
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with the boundary conditions bi(0) = 0 and ci(0) = 0. For this one-factor case, the ordinary differential
equations can be solved analytically,

bi(t) =
2λi(1− eηit)

2ηi − (ηi − κ∗i )(1− e−ηit)
; (31)

ci(t) =
κiθi

σ2
vi

[2 ln(1− ηi − κ∗i
2ηi

(1− e−ηit)) + (ηi − κ∗i )t], (32)

with
ηi =

√
(k∗i )2 + 2σ2

vi
λi, κ∗i = κi − izρiσiσvi

. (33)

4.1.2 Fast Fourier transform of option prices

It is convenient to represent the time-0 value of the FEOD call option at maturity t as

C(k) = e−rdtEQ(est − ek)1st≥k, (34)

where st = lnF 1
t S2

t /F 1
0 S2

0 , k = lnK/F 1
0 S2

0 , and C(k) = C(K)/F 1
0 S2

0 . Note that we drop the subscript
D in the strike price KD and maturity t as no confusion shall occur. In the following, we shall focus on
computing the relative call price of C(k), and the absolute call option price C(KD, t) can be easily obtained
by multiplying it by the spot price F 1

0 S2
0 .

Let z = zr + izi, zr, zi ∈ R, the generalized Fourier transform of FEOD option price C(k) is

G (z) =
∫ ∞

−∞
eizkC(k)dk =

∫ ∞

−∞
eizkEQ[e−rdt(est − ek)1st≥kdk]

= e−rdtEQ[
∫ s

−∞
eizk(est − ek)dk]

= e−rdtEQ[(
eizkest

iz
− e(iz+1)k

iz + 1
)k=st

k=−∞] (35)

For eizk to be convergent at k = −∞, the imaginary part of z needs zi < 0. Under zi < 0, the transform
for the option price becomes

G (z) = e−rdtEQ[
e(1+iz)st

iz
− e(1+iz)st

iz + 1
] = e−rdt φst(z−i)

iz(iz + 1)
. (36)

Given that G (z) is well defined, the option price is obtained via the inversion formula:

C(k) =
1
2π

∫ izi+∞

izi−∞
e−izkG (z)dz =

ezik

π

∫ ∞

0

e−izrkG (zr + izi)dzr, (37)

which can be approximated on a finite interval by

C(k) ≈ Ĉ(k) =
ezik

π

N∑

j=1

e−izr(j)kG (zk(j) + izi)∆zr (38)

where zr(j) are the nodes of zr and ∆zr is the spacing between nodes.
Following Carr and Madan (1999), we set zr(j) = η(j − 1), ku = −b + λ(u− 1), u = 1, · · · , N , and

require ηλ = 2π/N . Then we can write our call FEOD option price as:

C(ku) =
e−ziku

π

N∑

j=1

e−iλη(j−1)(u−1)eibη(j−1)G (η(j−1)+izi)
η

3
(3+(−1)j−δj−1), u = 1, · · · , N, (39)

where δj is the Kronecker delta function that is unity for j = 0 and zero otherwise. For the more discussions
about computing the Fourier inversions and pricing option using fast Fourier transform, see Wu (2008).
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4.2 Foreign swap options

The payoff of a foreign swap option depends on the value of three underlying assets, and the value is given
by

Swap = e−rdtEQ(F 1
t S2

t − F 1
t S3

t )+

= e−rdtEQ(F 1
0 S2

0eY 1
t +Y 2

t − F 1
0 S3

0eY 1
t +Y 3

t )+. (40)

If the underlying assets are modelled by the exponentials of Lévy processes, then the sum F 1
t S2

t −F 1
t S3

t will
no longer be a Lévy process, and the Fourier method used for FEOD option pricing can not be used directly.
The Monte Carlo method can be used to price foreign swap options. Under the risk-neutral measure, the
dynamics of the stock price under time-changed Lévy process are:

dSt = (r − µ̄)Stdt + σStdWTt + St(q − 1)dNt (41)

dvt = κ(θ − vt)dt + σv
√

vt(ρdBt +
√

1− ρ2dWt). (42)

Eq. (41) gives the dynamics of the stock price: r − µ̄ is the risk neutral drift with, r = rf , for the foreign
stock price, r = rd − rf , for the foreign exchange, µ̄ = λ(exp(µJ + 1

2σ2
J) − 1), and Tt =

∫ t

0
v(s)ds

are the stochastic time changes. Eq. (42) gives the evolution of the activity rate process which follows the
square-root process. Wt and Bt are two independent Brownian motion processes, and ρ represents the in-
stantaneous correlation between the return process and volatility process. So far, various time-discretization
and simulation schemes have been proposed to simulate the processes Eq. (41) and (42). For more discus-
sions about using simulation method for option pricing under stochastic volatility and Lévy processes, see
Broade and Kaya (2006) and Cont and Tankov (2004).

5 Numerical analysis

In this section, numerical analysis is performed to obtain an insight into the influences of volatility of
volatility, the long-run mean, the mean and variance of jumps, and the arrival intensity of jumps from both
the foreign equity and exchange rate on FEOD option prices. The following values are set and will be used
in the numerical analysis: rd = 0.03, rf = 0.05, κ1 = 1.5, κ2 = 2, θ1 = 0.02, θ2 = 0.03, σv1 = 0.2,
σv2 = 0.3, σ1 = 1, σ2 = 1, µ1J = 0.3, µ2J = 0.2, σ1J = 0.2, σ2J = 0.4, λ1 = 1, λ2 = 2, ρ1 = −0.5,
ρ2 = −0.5, v1(0) = 0.001, v2(0) = 0.003, F0 = 1, S0 = 2.2, KD = 2, T = 0.5. In applying fast fourier
transform for pricing a European call foreign equity option, following Carr and Madan (1999) we set the
zi = −1.25, N = 4096, c = 600, η = c/N , b = π/η, and λ = 2b/N .

1) The impact of the long-run mean θ and volatility of volatility σv on the FEOD prices
Figure 1 illustrates FEOD option prices under different long-run mean θ and volatility of volatility σv .

In our model, the variance from both the foreign equity and exchange rate drifts toward a long-run mean
of θ, with mean-reversion speed determined by κ. We know that a higher variance v(t) raises the prices
of all options, just as it does in the Black-Scholes model. Hence, an increase in the average variance θ

increases the prices of FEOD. Figure 1 shows that the FEOD option price is an increasing function of θ.
The parameter σv controls the volatility of volatility. σv increases the kurtosis of spot returns and creates
two fat tails in the distribution of spot returns. As Heston (1993) showed that this has effect of raising far-
in-the-money and far-out-of-money option prices and lowering in-the-money and out-of-the-money option
prices. Hence, Figure 1 displays that the FEOD option price is a decreasing function of σv .
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Figure 1 The impact of the long-run mean θ and the volatility of volatility σv on the FEOD option price.

2) The impact of the mean jump size µJ and the jump intensity λ on the FEOD prices
Figure 2 displays FEOD option prices under different mean jump size µJ and jump intensity λ. FEOD

option price is an increasing function of λ and µJ . The possibility of large upside benefits increases with
large jump intensity and mean jump size, but the nonlinearity of payoffs of FEOD options limits the down-
side loss; consequently, FEOD options are valuable under large λ and µJ .
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Figure 2 The impact of the mean jump size µJ and the jump intensity λ on the FEOD option price.

3)The impact of the jump size volatility vJ and the jump intensity λ on the FEOD option prices
Figure 3 shows FEOD option prices under different jump size volatility σJ and jump intensity λ. Figure

3 displays that the FEOD option price is an increasing function of σJ and λ. The reasoning behind the
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phenomenon is the same as the 2). The effects of mean jump size, jump size volatility, and jump intensity
on the FEOD option prices obtained in this paper are the same as Huang and Hung (2005).
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Figure 3 The impact of the variance of jumps vJ and the jump intensity λ on the FEOD option price.

Figure 1-6 show the impact of various Lévy process parameters θ, σv , µJ , σJ , and λ on the FEOD

option prices. Our numerical results show that all the factors such as long-run mean, volatility of volatility,
mean jump size, jump size volatility, and jump intensity from both the foreign equity and the exchange
rate have significant impact on the FEOD option prices. The numerical results show that our proposal to
incorporate the stochastic volatility into foreign equity option pricing model is necessary and this can help
us to model the option prices more precisely.

6 Conclusions

Foreign equity options are contingent claims where the payoff is determined by an equity in one currency
but the actual payoff is done in another currency. Foreign equity option pricing requires us to consider both
the foreign asset price process and the exchange rate process altogether. Huang and Hung (2005) priced
foreign equity options using the Lévy processes. In Huang and Hung’s paper, they considered jumps in the
foreign asset prices and exchange rates and assumed the volatility as constant. In this paper, we propose a
general foreign equity option pricing framework that unifies the vast foreign equity option pricing literature
and captures the three key pieces of evidence on financial securities: (1) jumps, (2) stochastic volatility, and
(3) the leverage effect. Under our framework, the exchange rate and foreign asset prices are governed by
time-changed Lévy processes, and the closed form pricing formula for the foreign equity option is obtained
through the use of characteristic function technology.
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