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1 Motivation

In a complete and arbitrage-free market, derivatives can be priced by constructing a
replicating portfolio and applying the principle of no-arbitrage to conclude that the price
of the contingent claim is equal to the price of the replicating portfolio. If the market is
incomplete, there are non-redundant derivatives for which no replicating portfolio exists.
For these derivatives, the principle of no arbitrage no longer results in a unique price,
but in some upper and lower bounds for the price which can be determined by using
super-hedging strategies (see e.g. El Karoui, Quenez [9]). The pricing function, that is the

mapping of future payoffs to current prices, is not unique.

Starting from the price processes of the basis assets, the market is incomplete if the number
of traded assets is too small compared to the number of risk factors. Examples include
models with stochastic volatility (e.g. Heston [18]) or models with jumps (e.g. Bakshi,
Cao, Chen [3]), but also short rate models for interest rate derivatives (e.g. Vasicek [25]
or Cox, Ingersoll, Ross [7]). Instead of specifying the price processes of the basis assets,
we can also start from observed market prices and calibrate the pricing function to these
market prices. In general, the number of observed prices will be too small to obtain a

unique pricing function, and we face the problems of market incompleteness here as well.

So in an incomplete market there is a whole set of candidate pricing functions which are
consistent with the observable market information. This information includes the prices
or price processes of basis assets and perhaps the market prices of some traded derivatives.
Given only the principle of no arbitrage, there is no "most natural” pricing function in
this set just like there is no "most natural” value in some set of real numbers.! Indeed,

every pricing function in this set may be the true one used by the market.

Implied methods solve the problem of non-uniqueness by specifying criteria for choosing
one pricing function out of the set of candidate pricing functions. Rubinstein [23] for
example suggests to choose the equivalent martingale measure (EMM) having minimal
quadratic distance from a given benchmark measure. Jackwerth, Rubinstein [20] maximize
the smoothness of the risk-neutral distribution. Cont [6] and Jackwerth [19] review some

classes of these implied methods.

The use of cross-entropy to choose an EMM is proposed by Rubinstein [23]. Buchen,
Kelly [5] and Stutzer [24] provide an implementation. Gulko [14, 15, 16, 17] gives some
intuition for this method and applies it to stock and bond options. Avellaneda et al. [1]
combine cross-entropy with a Monte-Carlo simulation. Avellaneda [2] considers the sen-
sitivity of this approach with respect to the given information, and Frittelli [10] analyzes
the relation between the use of cross-entropy and a portfolio planing problem, assuming

an exponential utility function.

T thank Walter Schachermayer for this remark.



The methods proposed in these articles rely on the choice of some EMM. For this, a
numeraire has to be chosen first. In the literature this choice of the numeraire is usually not
discussed in detail, perhaps based on the implicit assumption that the choice of numeraire
is irrelevant for the resulting pricing function. However, as will be shown below, this is

not necessarily the case.

Consider for example the method proposed by Rubinstein [23]. He chooses the risk-neutral
measure with minimal quadratic distance from a discrete counterpart of the log-normal
distribution, where the use of the log-normal distribution is motivated by the model of
Black-Scholes. Changing this method slightly by using the stock instead of the money
market account as the numeraire results in a different pricing function. This impact of the
numeraire can also be observed if the EMM with minimal cross-entropy relative to some

benchmark measure is chosen, as we show in a simple one-period example in section 2.

In this paper, we explicitly analyze the role of the numeraire. We show that it has an
impact on the resulting pricing function, and we also discuss the economic intuition for
this result. Based on the findings of this analysis, we propose two new methods which

avoid the dependence on the numeraire, and which have a sound economic motivation.

An impact of the numeraire is not consistent with the information-theoretical motivation
of cross-entropy. It is claimed (e.g. by Gulko [14]) that the chosen pricing function is
the least-prejudiced one, i.e. the pricing function which requires the fewest additional
assumptions. For this to be true, the chosen pricing function should only depend on the
given data and on an explicitly specified benchmark. However, due to the impact of the
numeraire, the pricing function depends on a subjective and arbitrary element, and is

indeed not the least-prejudiced one.

Further, we are able to provide an economic interpretation of this impact. Minimizing
cross-entropy corresponds to maximizing expected exponential utility. The impact of the
numeraire can be explained by noting that the utility function is not applied to wealth
itself, but to wealth expressed in units of the numeraire. While this provides an economic
explanation for the role of the numeraire, it does not give an economic justification for
this role. Even worse, the fact that we have to work with normalized wealth explicitly

shows that the role of the numeraire is economically counter-intuitive.

The second contribution of this paper is the development of two new methods which avoid
this numeraire dependence. The main modification compared to existing approaches is
that the criterion for the choice of a certain pricing function is not applied to EMMs,
but to stochastic discount factors (henceforth SDFs) or to Arrow-Debreu (henceforth
AD) prices. We show how to generalize the concept of cross-entropy, which can only be
applied to probability measures, to the concept of extended cross-entropy, which can also
be applied to random variables only satisfying a positivity restriction. We also show that

it does not matter whether the new method is applied to SDFs or to AD prices, because



the resulting pricing functions coincide.

There is still one degree of freedom in the approach, since the pricing function depends
on the benchmark model which gives the benchmark pricing function. Like the numeraire
and the benchmark measure, this benchmark model can basically be chosen arbitrarily.
As the market is incomplete, there is simply no way around making a subjective choice.
The main difference between this method and the approaches discussed above is that the
subjective choice now relates to a purely economic object, namely to a pricing function
itself. There are many more economic arguments for the choice of a benchmark pricing
function than there are economic arguments for the selection of a benchmark probability

measure or a numeraire.

The remainder of this paper is organized as follows. In section 2 we specify the general
model setup and discuss the use of cross-entropy. We show that the resulting pricing
function depends on the numeraire and discuss the implications of this finding for the
economic justification of the method. In section 3 we propose a new implied method
which avoids this dependence on the numeraire by choosing a stochastic discount factor

or by choosing Arrow-Debreu-Prices. Section 4 concludes.

2 EMM with Minimal Cross-Entropy

2.1 General Setup

We consider an economy with equally spaced trading datest = 0,1,...,7 and a finite state
space. There are n basis assets. The price processes of these assets are given exogeneously,
the price of asset i at time ¢ is denoted by S%(t). For ease of notation, we combine the
asset prices in the vector S(t) = (S'(¢),...,S™(t))" where the prime symbol denotes

transposition.

A numeraire is a traded asset or a self-financing portfolio whose price is strictly positive
at all points in time with probability one. We assume that there exists at least one such
numeraire. If N is the price process of the numeraire, the normalized prices are defined
via .
i S'(t)
Sy(t) = .
N(t)

Fixing a numeraire N, we can describe a self-financing trading strategy by the initial
capital ¢ and the predictable process {7(t)}:=1,.,r Where 7'(t) denotes the number of
units of asset ¢ held in the portfolio from time ¢ — 1 to time ¢. The trading-strategy is

self-financing by construction if we choose an appropriate position in the numeraire. The



value of this portfolio at time ¢ is

V(D) = NO( g7 + 210/ ASy(w)

where ASy(u) = Sy(u) — Sy(u—1). The set of all payoffs at time 7" that can be attained
with an initial capital equal to ¢ by following a self-financing trading strategy is denoted

by G(0,T,c). The set of payoffs attainable with an arbitrary initial capital is given by
g, 7= U 6(0,T,c).

c€R
In the following, we assume that the market is incomplete. In this case, there are non-
redundant contingent claims whose payoff at time 7" is not in the space G(0,7") of attain-
able payoffs. For such a non-redundant contingent claim, there is no replicating portfolio,
and the principle of no arbitrage does not give a unique price for the claim. The pricing
function, that is the mapping of future payoffs on prices today, is not unique. Instead,
there is a whole set of candidate pricing functions, each of which correctly prices the basis
assets. None of these pricing functions is the "most natural one” when it comes to pricing,
just like there is no "most natural” value in some set of real numbers. In order to choose
one of these pricing functions, some additional criteria must be applied. In the following,
we consider criteria that start from some benchmark and try to deviate as little as possible

from this benchmark.

2.2 Applying Cross-Entropy to Equivalent Martingale Measures

We first discuss the choice of the EMM having minimal cross-entropy with respect to a
given benchmark measure P. Each candidate pricing function can be represented by an
EMM PV for a numeraire N. The measure PV is equivalent to P, denoted by PV ~ P,
meaning that the tow measures have identical null sets. Under P¥, the prices of all basis

assets, normalized by the numeraire /N, are martingales:
Sit)=E" [Si(u) | F] 0<t<u<T, i=1,...,N.
The set of all candidate EMMs is
P(N,P) = {Q ‘ {Sn(t) }1=0....7 is a Q-martingale, () ~ P}.

The benchmark measure P is in general not an element of this set, as it is in general not
an EMM for the numeraire V.

The measures in P(N, P) price the given basis assets and all self-financing portfolios

correctly. Each of these measures represents one candidate pricing function. The price



that the candidate pricing function represented by some PV assigns to a contingent claim
C maturing at time ¢ can be calculated as
C(t)
C(0) = N(0) B | 2] 1
©) = N0 E™ [ (1)
Choosing a pricing function is equivalent to choosing an EMM out of the set P(N, P).
This set depends on the measure P (determining the states having non-zero probability)

and on the numeraire N. We will discuss the choice of the numeraire N below.

The principle of no arbitrage and the price processes of the basis assets determine the
set P(N, P). However, the principle of no arbitrage does not tell us which element from
P(N, P) is the true one used by the market. In order to choose one of these measures,
we need some additional criteria. One criterion proposed in the literature is to choose the
measure that deviates as little as possible from a given benchmark measure P. This can
for example be formalized by choosing the measure with minimal cross-entropy relative
to P. If P is the uniform distribution, this approach is equivalent to choosing the EMM
having maximal entropy, so that the criterion of maximal entropy is nested within the
approach discussed here (see, e.g., Buchen, Kelly [5]).

The cross-entropy of a probability measure () with respect to a probability measure P is

defined as (see, e.g., Kapur, Kesavan [22] or Golan, Judge, Miller [12])

HQ|P) - { Y e @(w)In % Q is ab‘solutely continuous w.r.t. P
otherwise

Cross-entropy is equal to zero if ) = P, and it is strictly greater than zero otherwise. In

an intuitive sense, it is the greater the more the measure () deviates from the measure

P. Interpreting the deviation of @) from P as the result of additional restrictions (which

are met by ), but not by P), cross-entropy is the greater the more new ’information’ is

contained in ) relative to P.

The problem of choosing an EMM can now be stated as

min H(PY|P) (2)
s.t. PV € P(N, P)

Before solving this problem, we briefly pause to discuss the motivation for the use of
cross-entropy. First note that if P € P(N, P), the criterion obviously chooses P. In
general, however, the benchmark measure will not be an EMM. To meet the restrictions
imposed by the price processes of the basis assets, it is necessary to go from P to a different
measure PY € P(N, P). A possible objective can then be to use only the information given
in the data without adding any further information. Together with the interpretation of

cross-entropy given above this results in choosing the measure with minimal cross-entropy



relative to the benchmark measure P. Because this method does not impose any additional
restrictions beyond that justified by the data, it is claimed to be the least prejudiced way
to choose the EMM.

The solution to the optimization problem can be found using a Lagrange approach. It is

given for example by Stutzer [24]:

Proposition 1 (Minimizing cross-entropy of the equivalent martingale measure)
Let P(N, P) denote the set of all candidate equivalent martingale measures for the nu-
meraire N. The benchmark measure is P. Then the minimal cross-entropy measure PN-MCE

solving the problem

min H(P"|P)
s.t. PN € P(N, P)

can be calculated as
PYMCE() — exp { Xy (T,w)}P(w)

where X (T') € G(0,T) is an appropriately chosen payoff at time T and Xy(T') is the

normalized payoff.

2.3 Impact of the numeraire on the pricing function

When choosing a pricing function by choosing an EMM, one has to decide on the numeraire
first. Normally, this happens in a rather ad-hoc way, without any economic motivation.
This procedure is based on the implicit assumption that the numeraire has no impact on
the resulting pricing function, just in analogy to the fact that changing the numeraire in
calculating the price of a contingent claim has no impact on the price. While the latter
proposition is certainly true and refers to the well-known change of numeraire (see e.g.
Geman, El Karoui, Rochet (1995) [11]), the former implicit assumption is not met: It
turns out that the numeraire indeed has an impact on the measure chosen, and that it

also has an impact on the resulting pricing function.

In order to show the impact of the numeraire, we represent the chosen pricing function by
a stochastic discount factor (SDF). Let SDF'(0,T) denote the SDF at time 0 for pricing
contingent claims with payoff at time 7. The pricing equation for a payoff C'(T) at time
T is

C(0) = E"[SDF(0,T)C(T)]. (3)

For pricing a payoff C'(t) occurring at time ¢, we invest C'(¢) from ¢ to 7" into the numeraire,

which gives a payoff equal to C(t)% at time T'. Plugging this into equation (3) yields

N(T)

C(0) = EF [SDF(O, T)C(t)W]. (4)
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Comparing equations (1) and (4), the relation between an EMM for the numeraire N and
an SDF representing the same pricing function is
PN N(0)

SDF(0,T) = — N{T)

When we use the numeraire N, the pricing function chosen by proposition 1 can be
represented by the SDF

SDFY(0.1) = 3 exp (X (1)} 5

where the payoff X € G(0,7") and possibly also the SDF depend on the numeraire N.

When the numeraire M is used, the chosen pricing function can be represented by

SDFM(0,T) = ]j\\j((;)) exp {Yu(T)}

where Y € G(0,7). The two pricing functions are identical when the SDFs are identical.

For the numeraire not to have any impact, the following condition must therefore be true:

g((;)) exp {XN(T)} = ]]\\j((;)) exp {YM(T)}.
Solving this condition for Y (7") gives
_ N(O)M(T)
Y(T)= M(T)Xy(T)In NTM©)

so that the two pricing functions can only be identical if the term on the right hand side
is a traded payoff. This condition is certainly true in a complete market where the space
G(0,T) of attainable payoffs coincides with the space of Fr-measurable random variables
and where the pricing function is unique. It is not necessarily true in an incomplete market,

as the following example will show:

Example: Consider a one-period model with three states wy,ws,ws. There are two basis

assets, N and M, whose payoffs at time 1 are given as follows:

N(l,wl) =2 N(l,U.)g) =1 N(].,w:;) =0.5
M(1,w) =125  M(L,w) =125  M(1,ws) = 1.25.

N(1,w) denotes the payoff of asset N at time 1 in state w. The prices of both basis assets

at time ¢ = 0 are equal to one:

Both N and M can serve as a numeraire. The benchmark probability measure P is

P(w;) = 0.25 P(w,) = 0.5 P(ws) = 0.25



The market is incomplete, since there are three states of nature, but only two traded
assets. Using /N as a numeraire, the pricing function chosen by minimizing cross-entropy

is given by

SDFY(0,1,w;) = 1.104671
SDFY(0,1,ws) = 0.742994
SDFY(0,1,ws) = 0.609342.

Using M as a numeraire, we obtain the pricing function

SDFM(0,1,w;) = 0.992303
SDFM(0,1,w,) = 0.911545
SDFM(0,1,ws) = 0.384606.

Since the SDFs are not identical, the pricing functions are also different. O

This result has several important consequences. First, the pre-selection of the numeraire
should not happen in an ad-hoc manner, but the numeraire should be chosen on the basis
of a carefully developed criterion. The problem is that at this point there is simply no
economic argument telling us what numeraire to use. Second, the use of cross-entropy is
motivated by considering cross-entropy as the least-prejudiced way to choose an EMM.
It would therefore also seem the least prejudiced way to choose a pricing function. The
dependence of the resulting pricing function on the numeraire shows that this is not true:
Minimizing cross-entropy of the EMM is not the least-prejudiced way to choose a pricing

function, but the pre-selection of the numeraire introduces an element of arbitrariness.

The last argument against the selection of an EMM points towards the main problem
of this approach, the necessity to choose a numeraire. This necessity is a consequence
of representing pricing functions by EMMs. We seem to apply a sound criterion (least

prejudiced choice) to the wrong object (equivalent martingale measure).

2.4 An Equivalent Portfolio Planning Problem

The use of cross-entropy to choose an EMM is often motivated by the information-
theoretical argument of being the least prejudiced way to choose a measure. Besides this
argument, there is also an economic motivation for the use of cross-entropy as a selection
criterion. Indeed, the pricing function chosen by minimizing cross-entropy coincides with
the pricing function resulting from the solution of a portfolio planning problem. The anal-
ysis of this problem will help to clarify the role of the numeraire, and it will show that

this role of the numeraire is rather counter-intuitive.



The relationship between the choice of an EMM and portfolio planing problems is also
considered, among others, by Frittelli [10], Kallsen [21] and Goll, Riischendorf [13]. Differ-
ent from the analysis here, they do not discuss the role of the numeraire, but start directly

from discounted prices without saying anything about the choice of the numeraire.

For the portfolio planning problem, consider an investor whose initial wealth is equal to
W(0) and who chooses the portfolio that maximizes his expected utility. Non-redundant
derivatives can then be priced by an indifference condition (see e.g. Davis [8]): the prices
of these derivatives are set in such a way that the investor will neither want to buy nor
to sell them. Put differently, the non-redundant derivatives are priced in such a way that

the utility of the investor does not increase when they are introduced at these prices.

In order to obtain the same pricing function as by minimizing cross-entropy, we have
to make several assumptions. We assume that expected utility is calculated under the
benchmark measure P. We consider an exponential utility function with constant absolute
risk aversion equal to one. Furthermore, we assume that this utility function is not applied
to terminal wealth, but to terminal wealth expressed in units of the numeraire. The

portfolio planing problem therefore is

maXEP[—e*WN(T)]
5.t Wy (T) = Wy(0) + > v(t)ASy(t).

t=1
The resulting pricing function can be derived from the first order conditions. This yields

WD o(T)

C(0) = EY EPk—WE@HJVUUJVwﬂ

where W*(T') denotes the optimal terminal wealth. Representing this pricing function by

an SDF gives
™A™ N(0)
SDFN(0,T) = 6
( ) ) EP[G_W]*\}(T)] N(T) ( )

where the superscript N again denotes dependence on the numeraire. Comparing (6) to

(5) shows that the pricing functions coincide for
WH(T) =Wy (0) + Xn(0) — Xn(T).

Note that there is no restriction on initial wealth W (0). The pricing function chosen by
minimizing cross-entropy can also be derived within a portfolio planning problem. This
provides an economic motivation for the criterion "minimal cross-entropy” and yields
some economic interpretation to the assumptions this criterion makes on the market

pricing process.

The impact of the numeraire on the pricing function can now be explained via the solution

of the portfolio planing problem. Note that we are not maximizing utility of terminal



wealth, but utility of terminal wealth expressed in units of the numeraire. It is exactly
this modification of the standard portfolio planning problem that is the economic reason
for the dependence on the numeraire. This modification, however, does not provide any
economic justification for this dependence. It only shows that the dependence is the result
of some quite unusual specification of the portfolio problem. It is difficult to come up with
a sound economic reason for normalizing wealth before calculating utility. And again, the
choice of the numeraire is completely ad-hoc. Putting arguments together, the choice of
the EMM having minimal cross-entropy with respect to a given benchmark measure P

suffers from the dependence on the numeraire.

It also suffers from the choice of the benchmark probability measure P. This measure is
the measure used to calculate expected utility. Again, the question is how to choose the
benchmark measure. For example, the measure could be based on a historical probability
distribution. In this case, we choose the EMM that is as close as possible to the historical
distribution. Besides this seemingly natural choice, it is again difficult to give a sound

economic argument for the objective of distance minimization.

Note that we could alternatively start from a benchmark pricing function. In this case,
the first step is to represent this benchmark pricing function by a numeraire and the
corresponding probability measure. The measure is then used as the benchmark, and the
algorithm proceeds just as described above. Details are given in Branger [4]. The approach
provides an economic argument for the choice of the benchmark measure and may thus
be considered superior to the previously described method. Unfortunately, the resulting

pricing function again depends on the numeraire.

3 Criteria Relying on the Use of Extended Cross-
Entropy

In an incomplete market, some additional criterion is needed for choosing one out of many
pricing functions. As we have seen the choice of the EMM with minimal cross-entropy

relative to some benchmark probability measure does not solve the problem.

We suggest two modifications of this method. The first relates to the observation that the
use of EMMs is only one out of several possibilities to represent a pricing function. As
this possibility suffers from the necessity to pre-select a numeraire, we apply the selection
criterion ”minimal cross-entropy” to two other possible representations of the pricing

function, namely to AD prices and to SDFs.

The second modification relates to the choice of the benchmark. Since we are interested

in choosing a pricing function, it seems quite natural to start from a benchmark pricing

10



function instead of starting from a probability measure and a numeraire that is chosen in

an ad-hoc way.

In order to implement these modifications, we have to use a different objective function.
Cross-entropy can only be applied to probability measures. We therefore generalize the
concept of cross-entropy to what we call extended cross-entropy, which can additionally

be applied to random variables which just satisfy a positivity constraint.

3.1 Extended Cross-Entropy

The extended cross-entropy of a positive random variable X with respect to some other
positive random variable Y, using a probability measure P, is derived from the cross-
entropy of some artificial probability measure PX with respect to some artificial proba-
bility measure P¥. We define

Hp(X |Y):= H(PX|PY).

Hp denotes extended cross-entropy calculated using some measure P, and H denotes the
cross-entropy of PX with respect to PY. The artificial probability measures P* and PY
are defined by the Radon-Nikodym derivatives

dpPX X dpPY Y

P~ EP[X]’ 4P EP[Y]

The definition of these artificial probability measures not only depends on the random

variables X and Y, but also on an auxiliary probability measure P, and so does extended
cross-entropy. We will discuss below whether this dependence causes problems similar to

those created by the dependence on the numeraire for the methods discussed in section 2.

3.2 Applying Extended Cross-Entropy to Arrow-Debreu Prices

We first apply the selection criterion to AD prices instead of EMMs. Using AD prices,
the pricing equation for a contingent claim with maturity v becomes
N(T,w)

C(0) =) AD(0,T,w)C (u,w) Nao)

weN
where AD(0,T,w) denotes the AD price at time ¢ = 0 for state w at time ¢ = 7. As in
equation (4), the intuition is to invest a payoff occurring at time u up to time 7" into the

numeraire, and then to use the AD prices to price the resulting payoff at time 7.

The set of all candidate AD prices which price the basis assets correctly is denoted by
AD = {AD(O,T, Y| SH0) = X0 AD(0, T, w) Si(t,w) X2 ¢t =1, Ti=1,...,n,

N(tw)

N(0) = 3,0 AD(0, T, w)N (T, w),
AD(0, T, w) > 0}.

11



To choose one out of these admissible pricing function, we start from a benchmark pricing
function which is represented by ADP""(0,T). We then choose the AD from AD which
have minimal extended cross-entropy relative to ADP""(0,T). Extended cross-entropy is
calculated using the uniform distribution U as the auxiliary measure, a choice that can
again be motivated by the objective to select the pricing function in the least prejudiced
way: Without any information that could restrict the auxiliary measure, there is no reason

to use any other distribution than the uniform distribution.

To calculate extended cross-entropy, we convert the AD prices into artificial probabilities.
It is important to note that these are indeed artificial probability measures. Above all,
they must not be confused with EMMs. The method and the resulting pricing function

are summarized in

Proposition 2 (Minimizing extended cross-entropy of AD prices) Let AD denote

the set of all candidate AD prices. Then the minimal extended cross-entropy AD prices

ADMECE solving the problem

min Hy (AD(0,T) | AD”" " (0, T))

s.t. AD(0,7) € AD
with U representing the uniform distribution are given by

ADMECE(0,T) = ADP""(0,T) exp {\(0) + X (T)}.

Here X\(0) is an appropriately chosen constant, and X (T) € G(0,T,0) is an appropriately
chosen attainable payolff.
The proof is similar to the proof of the next proposition. Thus, only the latter proof will
be given in the appendix.

The resulting AD prices do not depend on any numeraire but only on the benchmark
pricing function. So the choice of the AD prices with minimal extended cross-entropy
relative to the benchmark AD prices avoids the severe problems shown above for the
choice of EMMs.

3.3 Applying Extended Cross-Entropy to Stochastic Discount

Factors

The candidate pricing functions can not only be represented by AD prices, but also by
SDFs. The set of all candidate SDFs is

SDF(P) = {SDF(O,T) | Si(0) = EP [SDF(O,T)si(t)% t=1,....Ti=1,....n,
N(0) = EP[SDF(0, T)N(T)],

SDF(0,T,w) > 0}.

12



This set again depends on the auxiliary measure P.

As above, we start from a benchmark pricing function that is now represented by the
benchmark stochastic discount factor SDFT#7r((, T'). We choose the SDF out of SDF(P)
which has minimal extended cross-entropy relative to the benchmark SDF. Extended
cross-entropy is calculated using the auxiliary distribution P which is also used in the
definition of SDFs. Again, the motivation for the use of this distribution is to choose the
pricing function in the least prejudiced way. So we do not introduce any new distribution
here, but stick with the one already used for the SDFs. The method and the resulting

pricing function are summarized in

Proposition 3 (Minimizing extended cross-entropy of SDFs) Let SDF(P) denote
the set of all candidate SDFs. The minimial extended cross-entropy stochastic discount
factor SDFPMECE solying the problem

min Hp(SDF(0,T) | SDF" (0, T))
s.t. SDF(0,T) € SDF(P)

15 given by

SDFP’MECE(O, T) _ SDFP’pTiOT(O, T) exp {)\(0) + X(T)}

where A(0) is an appropriately chosen constant and X (T') € G(0,T,0) is an appropriately
chosen attainable payolff.

The proof is given in appendix A.

The chosen stochastic discount factor SDFPMECE((Q T) does not depend on any nu-
meraire. However, the SDF depends on a probability measure that has to be pre-specified.
So it could be that we have avoided the dependence on the numeraire at the cost of having
introduced a dependence on an auxiliary probability measure. Fortunately, it turns out
that the ad-hoc choice of P only has an impact on the SDF, but has no impact on the
resulting pricing function which is exactly in line with what we wanted to achieve. Indeed,
the pricing function coincides with the pricing function we obtain when applying the new

method introduced above in proposition 2 to AD prices.

Proposition 4 (Equivalence of choosing AD prices and SDFs) Assume that some
benchmark pricing function is given. It can be represented by the Arrow-Debreu prices
ADPTer (0, T) or by the stochastic discount factor SDFP™r (0, T) together with the mea-

sure P. Then, the pricing function chosen by solving the optimization problem

min Hy (AD(0,T) | AD”"(0,T)) (7)
s.t. AD(0,T) € AD

13



coincides with the pricing function chosen by solving the optimization problem

min Hp(SDF(0,T) | SDF" (0, T)) (8)
s.t. SDF(0,T) € SDF(P)

In order to prove this proposition, we represent the pricing function solving problem (8)
by AD prices. As the SDF is just the AD price per unit of probability, we obtain from
proposition 3

ADPMECE (0, T) = ADP™"(0,T) exp {\(0) + X(T)}. (9)

As proposition 2 shows, this is exactly the pricing function chosen by solving (7).

Thus, the two criteria introduced in proposition 2 and proposition 3 yield the same pricing
function. Therefore, the pricing function chosen by minimizing the extended cross-entropy
of the SDF does not depend on the auxiliary measure P. Comparing this to the choice
of the EMM by minimizing cross-entropy we can summarize the results: The ad-hoc
choice of the numeraire has an impact on the resulting pricing function when choosing
the EMM as in proposition 1, while the ad-hoc choice of the auxiliary measure has no
impact when choosing the SDF as in proposition 3. The method introduced in proposition
3 is therefore less prejudiced than the method discussed in proposition 1 when choosing

a pricing function. So, instead of choosing an EMM, we should choose an SDF.

It is also worth noting that it does not matter whether we apply the concept of extended
cross-entropy to AD prices or to SDFs. The resulting pricing functions coincide. So we do
not introduce an element of arbitrariness by deciding whether to represent the candidate

pricing functions via AD prices or via SDF's.

3.4 Impact of the benchmark model on the pricing function

In summary, the resulting pricing function chosen either by proposition 2 or by proposition
3 neither depends on a numeraire nor on an auxiliary probability measure. For the two
methods just discussed, the pricing function only depends on the benchmark model. In
contrast to the choice of a numeraire, the choice of the benchmark model can be motivated

using economic arguments.

The first possibility is to use a theoretical option pricing model and to calibrate this model
to a given data set. In most cases, the model will not price all basis correctly. The method
proposed here can then be interpreted as a way to modify the pricing function such that
it prices all basis assets correctly, but deviates as little as possible from the theoretical
option pricing model (Avellaneda et al. [1]). The second possibility arises in a setup where
the pricing function is calibrated to market prices every day. Here, a natural choice for

the actual benchmark pricing function is the pricing function used the day before.
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From an economic point of view, the dependence on a benchmark pricing function is
quite different from the dependence on a numeraire. The key point is that markets are
incomplete. Therefore, the principle of no arbitrage does not suffice to give a unique price
for all contingent claims. In order to derive a unique price for non-redundant claims also,
there is simply no way around making some additional assumptions. Of course, there are
quite different ways to make these assumptions, and that is the point where the methods
discussed in sections 2 and 3 differ from each other: The method from section 2 makes
an assumption about a benchmark measure and additionally about the numeraire to use.
Both assumptions are at least difficult to interpret economically, if not counter-intuitive.
The methods presented in this section make an assumption about the pricing process on
the market. The impact of this assumption on the resulting pricing function is transparent,

and we can control in a certain sense for the subjectivity of the procedure.

4 Conclusion

When the market is incomplete, there is a whole set of candidate pricing functions. Apply-
ing the principle of no-arbitrage only, there is no natural pricing function one should use
to price non-redundant contingent claims. In order to select one of these pricing functions,
some additional criteria have to be used. In this paper, we discuss criteria based on the

principle of minimum distance from a benchmark.

In the literature this idea is applied by starting from a benchmark probability measure
and choosing the EMM having minimal cross-entropy with respect to this benchmark
measure. As we have shown, this method suffers from several shortcomings. The main
difficulty is the dependence of the resulting pricing function on the numeraire, which is
usually chosen without a sound economic reason. Also, the economic intuition relying on
the portfolio planning problem does not help to solve this problem, but even shows that

the role of the numeraire is quite counter-intuitive.

These findings create the necessity for developing new methods. We no longer use EMMs
for representing pricing functions, but AD prices and SDFs. Thus, instead of starting
from a benchmark measure, we start directly from a benchmark pricing function which
can be seen as an economic benchmark for our problem. We introduce the criterion of
minimal extended cross-entropy for choosing one pricing function. The two new methods
are equivalent as the resulting pricing functions coincide. Indeed, the new methods choose
a pricing function that only depends on the benchmark pricing function, but not on any
weakly motivated ad-hoc choices.

The dependence on the benchmark pricing function cannot be avoided. It is no short-
coming of the method, but simply a characteristic of an incomplete market. Without any

additional assumptions, it is not possible to choose a unique pricing function. However,
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there are many more economic arguments for the choice of a benchmark pricing function
than there are economic arguments for the selection of a benchmark probability measure

or a numeraire.

There are some open questions that are left for further research. First, one could think
of implementing the different methods empirically in order to quantify the impact of the
choice of the numeraire or the impact of the benchmark model. Second, the new method
could be applied to interest rate models, where the choice of the numeraire is discussed

much more extensively than in models for pricing equity derivatives.
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Appendix

A Proof of Proposition 3

We have to solve the problem

min EHp(SDF(0,T) | SDF"P""(0,T))
s.t. SDF(0,T) € SDF(P)

The condition SDF(0,1) € SDF(P) can be written as

SDF(0,T,w) >0  Ywe

Ep[SDF(0,T)N(T)] = N(0)

Ep [SDF(0,T)ASy(t)N(I)] =0 i=1,....,nt=1,...,T
If a discount bond with maturity 7" is traded, the expectation of SDF(0,T) has to be
equal to the price of this bond. Otherwise, we add the restriction that this expectation is
equal to some parameter a, and solve the problem under this additional restriction. The

value of the objective function then depends on «a, and in a second step, we minimize the

objective function over a.

We start with the modified optimization problem where we have added the restriction
EP[SDF(0,T)] =a

with a > 0.

The minimization problem that has to be solved first is

SDI?((I;T) BP [SDFa(O,T) In (SDFa(O,T) E gf)ll)rizor(o(’()z:?)])] (A1)
st.  SDF(0,T)>0 (A.2)
Ep[SDF(0,T)N(T)] = N(0) (A.3)
EP[SDF(0,T)] =a (A.4)
EV[SDF(0,T)ASy(t)N(T)] =0  i=1,...,n,t=1,....,T (A.5)

Note that EF[SDF(0,T)] = a does not imply EX[SDF?""(0,T)] = a.

This problem can be solved using the Lagrange approach. The solution is

SDFr (0, T) exp { N(T) (2= + X7, MASN (1))}

N(0)

" B [SDFrier (0, T exp (N(T) (5 + 2oy MAS(0) 1]

SDF(0,T) = (A.6)
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Note that the parameter vy and the predictable process {);} both depend on a.

The optimal value Z(a) of the objective function also depends on a. Plugging (A.6) into
(A.1) gives

R fond [SDF””‘”"(O, T)}

I EF [SDF””OT(O, T) exp { N(T) (% + ; MASy (1)) }]

In the second step, we minimize over a. Noting that A and 7, depend on a, the first order

conditions are

0Z(a)

oa

qdr 1L __ 7
_ da N(©0)  N(0)
- o

1P [Spprmier(0, 1)V (Fy 1= XA O) () (20 a4 ST oS (1))]
EP[SDFwror(0, T)e" ) (P Masy e >) }

_ ! (13%_i 137())
~ N(0)\a da 2" 4 da
B 1
- TN "

This term is zero for vy = 0 so that the solution for the stochastic discount factor is

SDF? (0, T) exp { N(T) X1_, MASx ()}

SDF(O;T) EP [SDFprwr(O T GXp{N Zt 1 )\tASN( )}]

Noting that the exponent is a payoff that is attainable starting with zero initial wealth,

we finally get

SDFP (0, T)exp {X(T)}
Ep [SDFrrior(0,T) exp { X(T)}]

SDF(0,T) =

where X(7T") € G(0,7,0). We can now combine a and the denominator into the factor
exp{Ao}. This yields

SDF(0,T) = SDF""(0,T)exp{X +X(T)}

Using the second derivative, we can show that it is indeed a minimum.

18



References

1]

9]

[10]

[11]

[12]

[13]

M. Avellanda, R. Buff, C. Friedman, N. Grandchamp, L. Kruk, and J. Newman.
Weighted monte carlo: A new technique for calibrating asset-pricing models. Inter-
national Journal of Theoretical and Applied Finance, 4(1):91-119, 2001.

M. Avellaneda. Minimum-relative-entropy calibration of asset-pricing models. Inter-
national Journal of Theoretical and Applied Finance, 1(4):447-472, 1998.

G. Bakshi, C. Cao, and Z. Chen. Empirical performance of alternative option pricing
models. Journal of Finance, 52(5):2003-2049, 1997.

N. Branger. Bewertung nicht redundanter Finanzderivate mittels Entropie und Cross-
Entropie. Deutscher Universitatsverlag, 2002.

P. W. Buchen and M. Kelly. The maximum entropy distribution of an asset inferred
from option prices. Journal of Financial and Quantitative Analysis, 31:143—-159,
March 1996.

R. Cont. Beyond implied volatility. Working Paper, Ecole Polytechnique, Lausanne,
1997.

J. C. Cox, J. E. Ingersoll, and S. A. Ross. A theory of the term structure of interest
rates. Econometrica, 53(2):385-407, 1985.

M. H. A. Davis. Option pricing in incomplete marktes. In M. A. H. Dempster and
S. R. Pliska, editors, Mathematics of Derivative Securities, pages 216-226. Cambridge
University Press, 1997.

N. El Karoui and M. C. Quenez. Dynamic programming and pricing of contingent
claims in an incomplete market. SIAM Journal of Control Optim., 33(1):29-66, 1995.

M. Frittelli. The minimal entropy martingale measure and the valuation problem in
incomplete marktes. Mathematical Finance, 10(1):39-52, 2000.

H. Geman, N. El Karoui, and J. Rochet. Changes of numéraire, changes of probability
measure and option pricing. Journal of Applied Probability, 32(2):443-458, 1995.

A. Golan, G. Judge, and D. Miller. Mazimum entropy econometrics: robust estimation
with limited data. Wiley, Chichester, 1996.

T. Goll and L. Riischendorf. Minimax and minimal distance martingale measures
and their relationship to portfolio optimization. Finance and Stochastics, 5:557-581,
2001.

19



[14] L. Gulko. Dart boards and asset prices: Introducing the entropy pricing theory.
Advances in Econometrics, 12:237-276, 1997.

[15] L. Gulko. The entropic market hypotheses. International Journal of Theoretical and
Applied Finance, 2(3):293-329, 1999.

[16] L. Gulko. The entropy theory of stock option pricing. International Journal of
Theoretical and Applied Finance, 2(3):331-355, 1999.

[17] L. Gulko. The entropy theory of bond option pricing. International Journal of
Theoretical and Applied Finance, 5(4):355-384, 2002.

[18] S. L. Heston. A closed-form solution for options with stochastic volatility with ap-
plications to bond and currency options. Review of Financial Studies, 6(2):327-343,
1993.

[19] J. Jackwerth. Option-implied risk-neutral distributions and implied binomial trees:
A literature review. Journal of Derivatives, 7(2):66-82, 1999.

[20] J. C. Jackwerth and M. Rubinstein. Recovering probability distributions from option
prices. Journal of Finance, 51(5):1611-1631, 1996.

[21] J. Kallsen. Utility-based derivative pricing in incomplete markets. Working Paper,
Universitat Freiburg, 2000.

[22] J. N. Kapur and H. K. Kesavan. Entropy Optimization Principles with Applications.
Academic Press, London, 1992.

[23] M. Rubinstein. Implied binomial trees. Journal of Finance, 49(3):771-818, 1994.

[24] M. Stutzer. A simple nonparametric approach to derivative security valuation. Jour-
nal of Finance, 51(5):1633-1652, 1996.

[25] O. Vasicek. An equilibrium characterization of the term structure. Journal of Fi-
nancial Economics, 5:177-188, 1977.

20



