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Why is the Index Smile So Steep?

Abstract

There is empirical evidence that the implied volatility smile for index options is
significantly steeper than the smile for individual options. We propose a simple
model setup that is able to explain this difference. When modelling the index, an
aggregation restriction has to be taken into account. The index level is a weighted
sum of individual stock prices, so that the distribution of the index is completely
determined by the joint distribution of the component stocks. The difference between
the index smile and the smiles for individual stocks is then determined entirely by
the dependence structure among the stocks. Changing this dependence structure
changes the implied volatility curve for the index, whereas individual smiles would
remain unchanged.

We illustrate our basic idea in the context of a jump-diffusion model. The depen-
dence among stocks is captured by decomposing both the jump and the diffusion
terms into common and idiosyncratic parts. Special attention is paid to the de-
pendence in a crash. In this situation stocks are supposed to move together more
than during normal market periods, which causes the difference between the im-
plied volatilities of at-the-money and out-of-the-money puts to be much larger for
the index than for individual stocks.

Although the smile is explained exclusively by the risk-neutral distribution the re-
lation between this distribution and the data-generating process is also of interest.
It is an important feature of our model that large downward movements are caused
by jumps, which behave quite differently from diffusions under a change of measure.
While for purely diffusion-based models second moments are preserved under the
new measure this is not necessarily true for models with jump components. Here a
change of measure may also alter the dependence structure of the stocks.
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1 Introduction and Motivation

There is growing empirical evidence that the implied volatility smile for index options is
different from that for options on individual stocks. While implied volatility is in most
cases a downward sloping function of the strike price, index smiles are usually significantly
steeper than the corresponding curves for individual stocks which are sometimes even flat.
Among other papers this is demonstrated in Bakshi, Kapadia, and Madan [3] for options
on the S&P 100 index, and in Bollen and Whaley [5] for the S&P 500. For example, Bollen
and Whaley [5] find the slope of the function relating the implied volatility of options to
their moneyness to be around —0.308 for the typical stock in their sample, while for the

index the curve is much steeper with a slope of —0.886.

Two questions arise in this context. The first is how to explain in general a down-
ward sloping volatility smile, and the second is where the differences between the implied
volatility functions for indices and individual stocks come from. One hypothesis that has
been put forward in the literature to explain downward sloping smiles is the so-called
leverage effect. Interpreting the stock as a call option on the assets of the firm, a drop
in firm value causes a drop in the stock price which increases financial leverage. This in
turn should result in a higher equity volatility. However, in a recent paper Figlewski and
Wang [8] strongly reject this conjecture in an empirical study of stock options on the U.S.
market. The authors do not find any significant linkage between financial leverage and

volatility in a variety of tests.

Another strand of the literature explains the smile by using more advanced stochastic
processes for the underlying asset. For example, Bakshi, Cao, and Chen [2] present a
model incorporating stochastic volatility, stochastic jumps, and stochastic interest rates.
While this very general model performs better than the simple Black-Scholes [4] model in
explaining market prices for index options, it has never been tested explicitly for options

on individual stocks.

In addressing the second issue Bakshi, Kapadia, and Madan [3] argue that the

different slopes of the curves are in part related to differences in the skewness of the



risk-neutral distributions for the stocks and for the index. Assuming a return generating
model with the market return as a factor, the difference in skewness can be explained
by the properties of the idiosyncratic components. In contrast to these authors Bollen
and Whaley [5] argue that the physical distributions of the stocks and the index are not
significantly different. As a consequence they try to explain the different slopes of the
smiles not by the differences in the stochastic processes of the underlyings, but by buying
pressure for certain out-of-the-money (OTM) index puts which serve as an insurance
device against market crashes. This buying pressure increases option prices and therefore

also the implied volatilities for low strike prices.

The objective of our paper is not to develop yet another derivative pricing model
and to test empirically whether such a new approach is able to explain the empirical
phenomena described above. We rather want to propose a simple setup building on well-
accepted theoretical models and offering a straightforward economic explanation for the
pricing differences between equity and index options. The key feature of our approach is
that it explicitly takes an aditivity restriction for the index level, given individual stock
prices, into account. Our model is able to generate downward sloping smiles for both
options on individual stocks and on the index, as well as a significantly steeper slope of
the implied volatility curve for index options. We show that these goals can be achieved
without resorting to extremely advanced stochastic models and without dropping the

assumption of perfect markets.

The main contribution of the paper is threefold. We first argue that differences in
smiles must be explained by differences in risk-neutral distributions, not by differences
in physical distributions. Indeed, in an incomplete market, the physical densities may
well be the same for two assets while the risk-neutral densities are much different. This
allows us to focus mainly on the distributions under the risk-neutral measure. Second,
we explicitly take into account the economic aggregation restriction between an index
and its component stocks. As the index level is just the weighted sum of the individual
stock prices, its density is completely determined by the joint probability distributions

of the individual stocks. Especially, we do not model the index as an exogenous factor



explaining the returns on the stocks, but we derive the behaviour of the index from
the joint behaviour of the stocks. We show that the relation between the index smile
and the stock smiles is entirely determined by this dependence structure. Changing this
dependence structure can change the index smile dramatically, although the smiles for
individual stocks are left unchanged. Third, we are especially interested in the behaviour
of the stocks and the index in the case of large downward price moves. The greater the
risk-neutral probability for such a large price drop the steeper the resulting smile. Due
to the aggregation restriction, a crash in the index can only occur if there is a downward
move in the majority of the stocks, an issue which has been addressed in a different
context by Nietert [11]. Therefore, the risk-neutral probability of a market crash depends
critically on the risk-neutral probability that a downward move occurs for a large number
of stocks simultaneously. This, however, implies that the slope of the index smile for low
strike prices is determined by the dependence among stocks during a downward move.
Indeed, there is empirical evidence that during a crash the stocks tend to move together
more than during normal market periods. For example, Ang and Chen [1] show that the
dependence between stock returns and index returns during a downside move is greater
than it would be under a multivariate normal distribution. Longin and Solnik [9] as well
as Campbell, Koedijk, and Kofman [6] show that for international markets correlations

increase in bear markets.

In our model we assume that each individual stock follows a jump-diffusion pro-
cess with a rather simple specification. The option pricing formula for this framework is
well-known and was developed by Merton [10]. In order to capture the dependence, we
decompose both the diffusion and the jump term into a common and an idiosyncratic
component. This decomposition can be done under the physical as well as under the
risk-neutral distribution. It is important to note that the change of measure has quite
different effects on the diffusion and the jump components. For diffusion processes neither
volatilities nor correlations are changed compared to the physical measure. For a jump
process on the other hand the change of measure will affect variances as well as correla-

tions. Therefore, the dependence during a crash can be very different under the physical



and under the risk-neutral measure.

From an economic point of view, it can be argued that the dependence is higher
under the risk-neutral measure. A simultaneous crash in all stocks will reduce the wealth
of the representative investor by much more than a downward move in only a few stocks
which can partially be diversified away. The fear of jumps induces investors to demand
a much higher risk premium for market crashes than for downward moves in only one or
a small number of stocks. In our model this is captured by a risk-neutral probability of
a common downward move which is much higher than the probability of the same event
under the physical measure. This setup generates downward sloping volatility curves for

individual stocks as well as for the index which can exhibit different slopes.

The remainder of the paper is organized as follows. In section 2 we discuss the
aggregation restriction on the index. The model for individual stocks is introduced in
section 3, where we also show how to incorporate the dependence structure into the
model. The implications of our setup and the impact of the dependence structure on the
slope of the index smile are shown in section 4. Although all our pricing arguments are
of course based on risk-neutral distributions we find it nevertheless important to discuss
the relationship between the risk-neutral and the physical distribution, and this is done

in section 5. Some concluding remarks are presented in section 6.

2 The Aggregation Restriction for the Index

In the following analysis we will consider options on individual stocks as well as options
on the index composed of these stocks. Empirically, it is observed that for both types
of options the smile is downward sloping, but that the smile is much steeper for index

options than for individual stock options.

We propose a model setup that is able to explain both the general shape of the
implied volatility curve and the differences between stock option smiles and index smiles.
In particular, our model is able to explain why the index smile is much steeper than the

smiles of equity options.



When comparing the pricing of equity options to the pricing of index options, an
implicit restriction has to be taken into account. It is not possible to model the behaviour
of the individual stocks and to choose simply a further process for the behaviour of the
index. In other words, we cannot specify some type of stochastic process and fit this process
separately to each individual stock and then take some other (or the same) process to
describe the random evolution of the index level. Instead, the index must obey what we
call the aggregation restriction, since the index level is equal to the weighted sum of the

stock prices. A very general index formula is given by
i=1

where the weights w! are determined by the respective index formula. For example the
weights may be related to the number of shares outstanding or to the total market capi-
talization of a stock. In our analysis we will set the weights identically equal to 1/m for
the sake of simplicity. This assumption is not crucial, since changing the weights will have
only a marginal impact on our results. Equation (1) explicitly shows that the behaviour

of the index is completely determined by the joint behaviour of the stocks.

The first step in setting up a model is to choose a stochastic process for each indi-
vidual stock that is able to match the smile of equity options as it is observed in real data.
The second step then is to model the dependence of the stocks. Indeed, we will show that
the shape of the index smile, compared to the equity smile, is almost entirely determined

by this dependence.

The slope of the smile is related to the shape of the risk-neutral distribution. The
more left- (right-)skewed the distribution, the greater the implied volatilities for low (high)
strike prices. The fatter the tails of the distribution, the higher the implied volatilities for
both deep in-the-money and out-of-the-money options. Recent models, like Bakshi, Cao,
and Chen [2], incorporate both stochastic volatility and jumps. Both these features are
able to generate risk-neutral distributions that are more left- or right-skewed than the
lognormal distribution, and that have excess kurtosis. The exact effects depend on the

ultimate process and the actual parameters. Among other things Das and Sundaram [7]



discuss how the effects of stochastic volatility and jumps depend on time to maturity.
They show that stochastic volatility has a greater impact for longer maturities, while
jumps are necessary for short-term smiles to exhibit significantly negative slopes (given

that the average size of a jump is negative).

Our objective is to explain a downward sloping smile, so that the risk-neutral distri-
bution of returns must be left-skewed. In order to achieve this for both individual stock
options and the index, we must have downward jumps in the prices of both assets. The
steepness of the smile curves depends on the risk-neutral probabilities of these (large)
downward moves as well as on the jump sizes. Given the jump parameters for the stocks,
the jump characteristics of the index depend on the joint behaviour of the stocks due
to the aggregation restriction. There can only be a crash in the index when there is a
downward move in the majority of the stocks (see also Nietert [11]). The probability of a
market crash therefore depends on the probability that a downward jump in a stock is a
common jump affecting more or less all of the stocks. The greater this probability under
the risk-neutral measure, the steeper the smile for index options, while individual smiles

will not be affected.

To get the intuition behind this argument consider two extreme scenarios. In the
first case, the jumps in the stocks all occur independently, i.e. the probability for a market
crash is extremely low. Here we expect the impact of jumps in the individual stocks on
the prices of index options to be small because of the pronounced diversification effect. In
the second case, assume that downward jumps in the stocks all occur at the same time.
Whenever there is a crash in one stock, the prices of all the component stocks will go
down, resulting in a market crash. In this case, the jump component has a high impact

on the prices of OTM index puts, and the smile will be quite steep.

3 Pricing Individual Stock Options

As discussed above the stochastic behaviour of the index can not be modelled indepen-

dently of that of the stocks comprising the index. It is rather determined by the stochastic



processes of the individual stocks and their dependence. Our main focus is on this joint
behaviour of the stocks: How much do the stock price movements depend on each other?
We use a model setup that is as simple as possible and that allows us to focus on the anal-
ysis of the dependence structure. Each individual stock follows a jump-diffusion process,
where the parameters are assumed to be identical across stocks. Furthermore, the mea-
sures of dependence are assumed to be equal for any two pairs of stocks. The correlation

matrix would thus have equal entries for all elements off the main diagonal.

Each stock is driven by a Wiener process and a Poisson process, where the Poisson
process obviously captures the jumps in the stock price. Both the Wiener process and the
Poisson process have a common and an idiosyncratic component. The common component
affects all stocks in the index simultaneously, whereas the idiosyncratic components are

mutually independent. Formally for stock 7 we assume the dynamics

dSi = p'Sidt+ oS (VpwdWy + /1= pwdW]) — vSi_(dNf +dNi).  (2)

Here W€ is the Wiener process that is common to all stocks, and W* is the purely id-
iosyncratic diffusion component of asset i independent of W¢. This independence property
implies that \/pw W+ /T — pwW* is again a Wiener process for every stock 7. Further-
more, we assume a constant correlation of the diffusion parts between any two stocks

equal to py > 0.

In case of a jump the stock price decreases by the constant factor . Jumps have
intensity h so that for some small At the probability of a jump occuring in the interval
[t,t + At] is approximately equal to hA¢. A jump is a common jump with probability
pny and an idiosyncratic jump with probability 1 — py. This is modelled by defining
the common Poisson process N¢ with intensity hpy and the purely idiosyncratic Poisson
process N’ with intensity /4 (1—py). The common Poisson process captures market crashes,
and the greater py, the greater the probability of such a crash. Nf + N/ is again a Poisson
process with intensity h. Note that for a Poisson process IV, the probability that there are
two or more jumps in a very short interval is zero. Intuitively, this means that dN; can

only take on the values 0 and 1. This is also true for the term dNf+dNj as the probability



that there is a jump for each of these independent processes during a very short interval

of time is again equal to zero.

In a first step, we consider the pricing of options on individual stocks. For this anal-
ysis, the distinction between idiosyncratic components and common components does not
matter. Only the total risk of the stock is important, which is determined by the sum of
the diffusion components and by the sum of the Poisson processes. For the purpose of pric-
ing options on individual stocks we can therefore rewrite the dynamics from equation (2)

as
dSt = ,uSt_dt + O'St_th - ’}/St_dNt. (3)

Here W is a Wiener process, and N is a Poisson process with intensity h. Under the

risk-neutral measure the stock price process becomes
dSt = (7‘ + /i\l’}/)st,dt + O'St,d/W\t — ’}/St,dNt (4)

where W is again a Wiener process. The intensity of the Poisson process changes from h
to h = oh, where ¢ > 0 is the market price of jump risk. The variance of the continuous

return is given by
Varns,—nS,] = (0% +H(n(1—)) ¢

This variance depends on the jump intensity, so that it will in general be different
under the physical and the risk-neutral measure. Note that this is a special feature
of models incorporating jump components. For a pure diffusion model we would have
Var [InS; —InSy] = Var[lnS; —1n Sy, i.e. the variance would not be affected by the

measure change.

As shown by Merton [10] the price of a European call option on the stock in this

framework is given by

N ( )
C'P(So, K,r,T,0,h,y) = Y e MITOBS (S0 K, ry, T, 0)



where

nin(l —~)

wo= TRy ——

and CB% (S, K,r,T,o) is the price of a European call option in the Black-Scholes model.

In our model setup with v > 0, the risk-neutral distribution has a higher variance
and is more left-skewed than a lognormal distribution. Therefore, the implied volatility
function is in general decreasing in the strike price. The higher the jump intensity and
the higher the jump size, the higher the implied volatilities for options with low strikes,

and the steeper the smile.

We now return to the question of how to model the joint behaviour of the stocks
under the risk-neutral measure. Under the physical measure, equation (2) shows that the
joint behaviour is governed by py and by py. Under the risk-neutral measure, the stock

price process is
dSi = (r+hy)Si_dt + oSi_(VpwdWe + /1 — pwdW}) — 4Si_(dNf + dN}). (5)

Here W€ and W are again Wiener processes. If we only consider the diffusion components,
the correlation of any two stocks under the risk-neutral measure is again py,. However, in
analogy to (4) the intensity of the Poisson process N¢+ N* changes from h to h = h¢, and
also the probability that a jump is common changes from py to py. As the risk-neutral
measure and the physical measure must be equivalent, i.e. assign a zero probability to
identical sets of events, py = 0 implies py = 0, and py = 1 implies py = 1. Note that
this is all we can say about the relationship between py and py so that for py € (0,1)

the only restriction is py € (0, 1).

As already shown, the variance of the jump components is different under the phys-
ical and under the risk-neutral measure. Furthermore, the correlation of the jump com-
ponents N¢+ N and N¢+ N/ of stocks i and j is different under the physical and under

the risk-neutral measure as well. Under the physical measure,

corr|Nf + NZ, Nf + th] = pn,



whereas under the risk-neutral measure
GOFTING + N NG+ NI =

This change in second moments is totally different from what we obtain in a pure diffusion
setting, where not only variances, but also correlations remain unchanged in the course

of a measure change.

This fact may in part explain why physical distributions do not seem very helpful in
explaining the shapes of smiles observed in the options markets, as documented by Bollen
and Whaley [5]. Whereas in a multivariate diffusion model we can estimate the diversi-
fication effect from stock market data, this is basically impossible for models containing
jumps. The lower tail can be quite different under the physical and under the risk-neutral
distribution, since correlations can change almost arbitrarily. In particular, we can no
longer use the dependence under the physical probability to assess the dependence under

the risk-neutral distribution.

4 Pricing Index Options

Having modelled the joint behaviour of the stocks, we now consider the characteristics of
the index. Assuming Sj = 1 for 4 = 1,...,m and weights that are identically equal to
1/m the index level at time ¢ is given as

1

.

o= — exp {(r =050+ )t + (Vaw Weh (1= )™ > exp { VT o Wi (1= 7)™
- =1

~

common component . g
idiosyncratic components

The first term represents the common component, since the respective impact of Wwe
and N€ is the same for each stock and for the index. The second term is the sum of
m idiosyncratic components. The lower the correlation coefficients py and py, the more

diversification effects will show up in this term.

In the following analysis, we are primarily interested in the influence of py, and of

pn on the slope of the index smile. As we will show the impact of these two correlation

10



measures on the shape of the smile for index options is distinctively different. Note further
that these parameters have no impact on the prices of options on individual stocks. As
argued above, these prices only depend on the total diffusion component and the total
jump component, but not on the decomposition of these components into common and

idiosyncratic parts.

Taken together, changing the dependence between the stocks via py and py changes
the smile of the index without changing the smile of individual stocks. These parameters
can therefore be used to achieve a given difference between the smile of stocks and the

smile of the index.

There is no closed-form solution for index option prices in our setting. Since the index
is some weighted arithmetic average of individual stock prices, such a formula would not
exist even when each stock followed a geometric Brownian motion and all the stocks were
independent. We therefore use Monte Carlo simulation to calculate the prices of index call
options. From these, we infer the implied volatilities and compare them to the implied

volatilities of the stocks.

Our base case has the following parameters (note that the parameters are identical
for all the individual stocks and pairs of stocks): S = 1, r =0, T = 1/12, 0 = 0.2,
v =0.2, h= 1.0, pyr = 0.2, and py = 1.0. To calculate the option prices we use 1,000,000
simulation runs to generate the distribution of the terminal prices of m = 30 stocks.
The number of common and of idiosyncratic jumps is drawn out of independent Poisson
distributions with intensities pyhT and (1-— Z)\N)/ET, respectively. Of course, more than

one jump may occur over the interval [0, 7.

Figure 1 shows the impact of py on the implied volatilities of index options. For
low strike prices, the influence of py on implied volatilities can almost be neglected. For
high strike prices, the greater the correlation py, the greater the implied volatility. Note
that some of the curves fall off sharply for high strikes. This is due to the fact that there
are hardly any realizations of the terminal index value in this range, so that option prices

are practically zero, so that implied volatilities are not well-defined.
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The effect on the implied volalitities for high strike prices can be explained via the
variance of the index. The greater the correlation of the individual Wiener processes, the
greater the variance of the index, since there is less diversification. This increases the prices
of index options, resulting in a greater implied volatility. To see what happens for low
strike prices, note that low realisations of the index are reached either by low realisations
of the Wiener process, or by downward jumps. Below some level, the probability that a
certain price is reached by the Wiener process is nearly zero, while the probability that it
is reached by downward jumps may be comparatively high so that the implied volatility
for options with quite low strike prices is mainly determined by the characteristics of
the jump component. This explains that implied volatilities for low strike prices are not

affected significantly by the correlation py, of the Wiener processes.

The graphs in figure 2 show the implied volatility graphs for varying values of py,
the correlation measure for the Poisson processes. Also here it is possible that some high
index levels are just not reached at all in the simulation, so that implied volatilities do
not exist for the corresponding strike prices. Compared to the previous figure the picture
is exactly reversed. Again, implied volatilites are increasing in the correlation measure.
However, now we observe a much larger impact for low strike price options, whereas the

effect of an increase in py is almost negligible for out-of-the-money calls.

Again the explanation is found by looking at the total variance of the index. As
mentioned above the greater the correlation, the less diversification there is and the greater
the variance will be. Therefore, the overall level of implied volatilities increases. The
different influence of py on options with low and high strike prices can be explained by
noting that we only consider downward jumps. The greater py, the greater the probability
that there is a crash in the index, and the greater the price of an out-of-the-money put
on the index. The price of an out-of-the-money call, on the other hand, is hardly affected,
because high levels of the index are not reached by jumps, but only due to large positive

shocks in the diffusion part.

Taken altogether, implied volatilities for low strike prices are increasing in py. Im-

plied volatilities for high strike prices are increasing in py,. The absolute amount of the
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slope is therefore increasing in py and decreasing in py,. This shows that there is basically
no need to introduce more and more complex stochastic processes for the individual stocks
to generate implied volatility curves that are observed in real data. In the case of index
options the dependence structure between the stocks in the index is the key variable in
the model, and it is mainly this dependence that generates steeper slopes for the index,

based on a model which also generates negatively sloped smiles for individual stocks.

5 Linking Physical and Risk-Neutral Distributions

For the pricing of derivative assets only the risk-neutral distribution and not the physical
distribution is relevant. Nevertheless, it is interesting to take a closer look at the distri-
bution under the original measure to see what we can and what we cannot infer from
it.

In our model each stock follows a jump-diffusion process under the physical distri-
bution. We assume that the processes are the same for each stock so that the physical
distributions are the same. This does not at all mean that also the risk-neutral distribu-
tions have to coincide. Because there are more risk factors than traded assets, the market
is incomplete. So it is very well possible that the market prices of risk for the jump com-
ponents of two stocks are different, implying that the risk-neutral densities and the smile
curves of the two stocks will be different as well. Thus, differences in the physical distri-
butions are certainly one potential source for differences in the smiles, but they are by no

means the only one.

Concerning the dependence structure of the individual stocks, the picture is a little
bit more complicated. We model the co-movement of the stocks by decomposing the
diffusion part and the jump part into a common and an idiosyncratic component. The
correlation py, of the Wiener processes describes how much diversification there is in the
index for normal movements of the stocks. It is the same under the physical and the

risk-neutral measure.

The correlation py of the Poisson processes gives the physical probability that a

13



jump is a common one, i.e. it determines — together with the intensity — the probability
of a market crash. Under the risk-neutral measure this correlation is changed to px so
that the dependence of the stocks in the lower tail can be completely different under the
physical than under the risk-neutral distribution. It is well possible that py is close to
zero and py is close to one so that the probability of a market crash is quite low under

the physical density, whereas it is substantial under the risk-neutral density.

Altogether, since the physical and the risk-neutral measure must be equivalent, the
role of the physical distribution with respect to the jump component is only to specify
which events are possible. It only tells us that there are common jumps and idiosyncratic
jumps, and that the jump size is —v. The risk-neutral probabilities of common and id-
iosyncratic jumps are not specified at all, since in our setup, the market is incomplete.
One could well argue that the probability of a jump is much higher under the risk-neutral
distribution due to risk-aversion — remember that the change of measure depends on the
risk attitude of the investors. We can also argue that the conditional probability that a
jump is a common jump causing a crash in the index is much higher under the risk-neutral
measure. Again, this can be motivated by risk-aversion, since a common jump will always
reduce the wealth of an investor significantly while an idiosyncratic jump could partly be

diversified away.

6 Conclusion

An index is a portfolio of stocks, so that the index level is a weighted sum of individual
stock prices. As a consequence the stochastic behaviour of the index is completely deter-
mined by the joint behaviour of the stocks, i.e. by the individual stochastic processes of
the stocks and by their dependence structure. This paper explicitly takes this aggregation

restriction into account when comparing the smiles of individual stock and index options.

We show that it is primarily the dependence structure that is able to explain the
differential pricing of stock and index options. Assuming for simplicity that each jump is

a downward jump, we show that the skew is the steeper the greater the correlation of the

14



jumps and the lower the correlation of the Wiener processes.

In our analysis we highlight the fundamental differences between diffusions and
jumps. For diffusions second moments are identical under the physical and under the risk-
neutral measure. Changing the measure does not change the dependence structure. On
the contrary, for jumps second moments can be different under the physical and under
the risk-neutral measure. Changing the measure can change the dependence structure
completely so that we are free to choose nearly any dependence structure under the risk-

neutral measure, the only restriction being the equivalence of the two measures.

Therefore, the inclusion of jump components is critical in our model. When cal-
ibrating the model to time-series and cross-sections of option prices, stock prices, and
index prices, then from a conceptual point of view the time-series information gives the
second moments of the diffusion under the physical and under the risk-neutral measure.
The cross-section of stock option prices gives the characteristics of jump intensities and
jump sizes under the risk-neutral measure. Finally, for calibrating the model to index
options also, we can choose the correlations of the jumps and the jump sizes. Without the

inclusion of jumps, we would not have this additional degree of freedom.

Of course, our approach is not restricted at all to the simple setup we have proposed
in this paper. More complicated dependence structures and more complicated models for
the individual stocks can easily be introduced. Our main results, namely that the aggre-
gation restriction must be taken into account and that the dependence structure of the
stocks determines the relation between individual smiles and index smiles, do not depend
on the particular model chosen for the empirical application. Concerning the dependence
structure we are not limited to considering only common and idiosyncratic components,
but one could also think of additional components that only affect certain subsets of the
universe of all stocks. We are also not restricted to a constant correlation between any
two stocks but can start from an arbitrary correlation structure. Concerning the stochas-
tic processes of the stocks we can integrate our approach into a more complicated model
setup allowing for stochastic jumps, stochastic volatility, and stochastic interest rates, like

the models suggested by Bakshi, Cao, and Chen [2] or Pan [12].
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Figure 1:
Jump-Diffusion model:

Implied volatilities of the stocks (upper line) and of the index
as a function of strike price for different values of py
(from bottom to top, pw = 0.00,0.20, 0.40)
So=1,r=0.00,T=1/12, 0 = 0.20, h = 1.00, 7 = 0.2, py = 1.00
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Figure 2:
Jump-Diffusion model:

Implied volatilities of the stocks (upper line) and of the index
as a function of strike price for different values of py
(from bottom to top, py = 0.00,0.20,0.50, 1.00)
So=1,r=0.00,T=1/12, 0 = 0.20, p = 0.20, h = 1.00, v = 0.2
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